[image: image1.png]

Preface

Most Internet technologies are designed for desktop computers or enterprise servers running on reliable networks with relatively high bandwidth. Handheld wireless devices, on the other hand, have a more constrained computing environment. They tend to have less memory, less powerful CPUs, different input devices, and smaller displays.

Since the mid-1990s, various architectures and protocols have been introduced to deal with these constraints. The Wireless Application Protocol (or WAP), which is a specification developed by the WAP Forum (http://www.wapforum.org), takes advantage of several data-handling approaches already in use. Developing wireless applications using WAP technologies is similar to developing Web pages with a markup language (e.g., HTML or XML) because WAP technologies are browser-based.

Another approach to developing wireless applications is to use the Java 2 Platform, Micro Edition (J2ME[image: image2.png]

). The Java[image: image3.png]

 programming language already plays an important role in modern programming. With WAP, you can use Java servlets and JavaServer Pages[image: image4.png]

 to generate Wireless Markup Language (WML) pages dynamically. However, with J2ME, you can now write applications in Java and store them directly on a cell phone. This adds a whole new dimension to wireless programming.

Audience

This book is about programming with J2ME on wireless devices. If you're already familiar with the architecture, you probably noticed that the Connected Limited Device Configuration (CLDC) and the Mobile Information Device Profile (MIDP) classes are not large. Therefore, this book is correspondingly compact in size. The book acts as a quick guide for programmers who are familiar with the Java 2 Standard Edition (J2SE[image: image5.png]

) and want to get up to speed quickly with the J2ME. We assume that you are familiar with Java programming and have worked with the J2SE classes. In addition, we assume that you are familiar with setting up Java to work under various environments (Windows or Unix platforms), as well as compiling and running Java applications.

The book also serves as a quick reference for Java programmers who are interested in developing wireless software applications. The examples presented throughout the book are a good starting point for working with all the MIDP features, including user interface, networking, and databases. However, we should point out that this book is not a rehash of the entire J2SE class library. Several of the classes of java.io, java.lang, and java.net are included in the CLDC and MIDP libraries, but are less bulky than their J2SE counterparts. We assume that you already know how to use these classes, although we have included them in the API reference for completeness.

Contents of This Book

This book is divided into three parts. Part I gives an overview of the J2ME and includes information about its architectural components: namely, configurations and profiles. Part I also presents detailed coverage of the CLDC and the MIDP.

Chapter 1

This chapter introduces the J2ME environment and also explains configurations and profiles. In addition, it shows you how to set up the J2ME Wireless Toolkit to compile, preverify, and run a simple MIDlet using the command line with the Wireless Toolkit emulator.

Chapter 2

This chapter discusses the CLDC, including its requirements, limitations, and the differences between its classes and the classes of the J2SE. In addition, it looks briefly at the standalone CLDC and KVM distribution.

Chapter 3

This chapter introduces the requirements, limitations, and classes of the MIDP, as well as introducing MIDlets and their associated Java Application Descriptor (JAD) files.

Part II contains programming details of the MIDP. It shows you how to program the phone interface, handle events, make network connections, and work with databases.

Chapter 4

This chapter picks up where Chapter 3 left off, explaining the MIDlet lifecycle methods, the Java application manager, and showing how to use the KToolbar application inside the J2ME Wireless Toolkit to simplify MIDlet development. We also discuss how to deploy MIDlets and include step-by-step instructions on how to download a MIDlet into a Motorola i85s or i50x J2ME-enabled phone.

Chapter 5

This chapter introduces the MIDP GUI model and its associated classes. In addition, it gives detailed coverage of both the high-level and low-level MIDP GUI APIs.

Chapter 6

This chapter continues the discussion of the MIDP GUI APIs by describing how various events take place surrounding the graphical components and commands. In addition, we cover the CommandListener and ItemStateListener interfaces, as well as low-level event handling.

Chapter 7

This chapter discusses the Generic Connection Framework provided by the CLDC and shows how to implement an HTTP connection across the Internet, using a MIDlet. The chapter also includes examples of how to send data to CGI scripts and Java servlets across a network. Finally, the chapter briefly discusses wireless session tracking and security for MIDlet data traveling across the airwaves.

Chapter 8

This chapter introduces the concept of data stores, which are simple databases that MIDP applications can use to store persistent data beyond the lifetime of the MIDlet that created them. In addition, the chapter includes a MIDlet that can be used to download stock information from a remote web site.

Chapter 9

This chapter gives a quick introduction to the MIDP implementation on the Palm Connected Organizers, including step-by-step instructions on how to deploy MIDlets to a PalmPilot.

Part III contains several chapters that are quick references for the J2ME CLDC and MIDP APIs. There is also an appendix that contains bibliographic information and URLs to J2ME specifications, white papers, wireless software development kits, and other information that is important to developers.

Conventions Used in This Book

This book uses the following typographical conventions:

A Constant Width font is used for:

· Anything that might appear in a Java program, including keywords, data types, constants, method names, objects, variables, class names, and interface names

· All Java code examples

· Attributes that might appear in a manifest or JAD file

An italic font is used for:

· New terms where they are defined

· Pathnames, filenames, directory names, and program names (unless the program name is the name of a Java class; then it appears in constant width, like other class names)

· Internet addresses, such as domain names, URLs, and email addresses

A boldface font is used for:

· Example lines of Java code to which we wish to draw attention

Acknowledgments

I am deeply grateful to my editor, Robert Eckstein, for all his comments, suggestions, and guidelines throughout the development of this book. I did not know about all the contributions an editor can make to a book until I worked with Bob. Thanks, Bob! Thanks also to the production team at O'Reilly for their hard work on this book.

Special thanks also to Monica Pawlan, Jenny Pratt, Dana Nouri, and Laureen Hudson of the Java Developer Connection (JDC), who either provided comments or edited some of the examples used in this book when they first appeared on the JDC. Also, thanks to the thousands of JDC members who sent in comments and suggestions regarding my articles. Thanks also to the following people who reviewed the contents of this book for accuracy: Ben Griffin, Marc Loy, and Jeff Cunningham.

I would also like to thank my family for their support during my studies, especially my brother, Dr. Mohammad H. Hamdan, for teaching me the value of hard work.

Finally, thanks to my wife, Reema, for her love, support, tolerance, and coffee, and my baby son Yusef, who was born on October 14, 2001, for providing a fun home environment while I finished this book.

Part I: Introducing Java 2 Platform, Micro Edition (J2ME)

Part I is an introduction to the Java 2 Micro Edition (J2ME) and J2ME programming. These chapters will give you an overview of the J2ME, and quickly teach you everything you need to know to get started with J2ME programming.

Chapter 1
Chapter 2
Chapter 3
Chapter 1. Overview of J2ME

This book is about wireless Java programming with the Java 2 Platform, Micro Edition (J2ME). Sun Microsystems, Inc. introduced J2ME at the JavaOne conference in June 1999 as the younger sibling of both the Java 2 Standard Edition (J2SE) and the Java 2 Enterprise Edition (J2EE). At the time, distributed programming was taking the Java developer community by storm, so most of the participants at the show were more interested in what J2EE had to offer. However, over the next two years, developers also realized that there was tremendous value in having small components running Java. Two years later, at the 2001 JavaOne conference, Sun devoted an entire track for individuals seeking to master the once arcane J2ME. Luckily, you don't need to attend JavaOne to learn about J2ME. Instead, this book will help you through the myriad details of understanding J2ME architecture and programming J2ME applications.

In this chapter, we will present an overview of J2ME's primary components, including virtual machines, configurations, and profiles. We'll then present a few short examples of J2ME-enabled applications to whet your appetite and to show you how easy it is to get started with J2ME.

1.1 What Is J2ME?

J2ME is a version of Sun Microsystems' Java that is aimed at the consumer and embedded devices market, which includes electronic commodities such as cellular telephones, pagers, Personal Digital Assistants (PDAs), set-top boxes, and other small devices. Since its release, over 600 companies have joined the development effort, including large corporations such as Palm, Nokia, Motorola, and RIM. However, the direction that J2ME travels is not shrouded in secrecy behind closed corporate doors. Instead, development of J2ME is handled through the Java Community Process (JCP), which allows anyone with an Internet connection to get involved.

J2ME provides a complete set of solutions for creating state-of-the-art networked applications for small devices. It also promises to enable device manufacturers, service providers, and application developers to deploy new applications and services to their customers. However, in doing so, it does not sacrifice some of the founding guidelines of Java, which have become increasingly important these days, namely cross-platform compatibility and security.

1.1.1 A High-Level View

From a high-level view, J2ME defines the following components:

· A series of Java virtual machines, each for use on different types of small devices, each with different requirements

· A group of libraries and APIs that can be run under each of the virtual machines; these are known as configurations and profiles

· Various tools for deployment and device configuration

The first two components make up the J2ME runtime environment . Figure 1-1 provides a relational view of the runtime environment. At its heart is a Java virtual machine, which runs on top of a device's host operating system. Above that is a specific J2ME configuration, which consists of programming libraries that provide basic functionality based on the resource requirements of the device. On top of the configuration are one or more J2ME profiles, which are additional programming libraries that take advantage of kindred functionalities on similar devices.

Figure 1-1. The high-level architecture of J2ME runtime environment

[image: image6.png]Profiles
Gnfguations
JovaVitual Wacines

HostOperating System

If you haven't worked with J2ME before, you're probably wondering about the top two layers. It's important to distinguish between a configuration and a profile in the J2ME world, so let's introduce them now.

1.1.2 Configurations

Cellular telephones, pagers, organizers, and other small devices are diverse in form, functionality, and feature. However, they often use similar processors and have similar amounts of memory. For these reasons, the J2ME designers created configurations. Configurations define a horizontal grouping of products based on the available memory budget and processing power of each device. Once this information is known, the configuration then outlines the following:

· The Java programming language features supported

· The Java virtual machine features supported

· The basic Java libraries and APIs supported

Currently, there are two standard configurations in the J2ME world: the Connected Limited Device Configuration (CLDC) and the Connected Device Configuration (CDC). Let's look at the CDC first.

1.1.2.1 The CDC

The CDC is targeted toward powerful devices that are intermittently connected to a network, including set-top boxes, Internet TVs, home appliances, and car navigation systems. The CDC contains a full-featured Java virtual machine, similar to that in use today with the J2SE. The difference lies in the respective devices' memory and display capabilities.

Here are the resource requirements for CDC devices, as given by the official J2ME specifications:[1]

[1] The J2ME CDC specifications are located on the Java Community Process web site as JSR-36, which can be found at http://www.jcp.org/jsr/detail/36.jsp.

· The device is powered by a 32-bit processor.

· The device has 2 megabytes or more of total memory available for Java. This includes both RAM and flash memory or ROM.

· The device requires the full functionality of the Java 2 "Blue Book" virtual machine.

· The device has connectivity to some kind of network, often with a wireless, intermittent connection and with limited (often 9600 bps or less) bandwidth.

· The device may have a user interface with some degree of sophistication, but a user interface is not mandatory.

1.1.2.2 The CLDC

The second type of configuration is more prevalent in the J2ME world: the CLDC. This configuration specifies a much smaller footprint for consumer and embedded devices than the CDC. The CLDC was first distributed in October 1999 with the idea of creating a "lowest common denominator" Java platform for embedded devices, specifically in terms of networking, I/O, security, and core libraries. Today, some of the devices that you might find powered by the CLDC include mobile cell phones, two-way pagers, personal digital assistants (PDAs), and personal organizers.

Here are the requirements for the J2ME CLDC, again from the official J2ME specifications:*

· The device can have between 160 and 512 kilobytes of total memory available for the Java platform, including both RAM and flash memory or ROM.

· The device can have limited power, such as battery-powered operation.

· The device has connectivity to some kind of network, often with a wireless, intermittent connection and with limited (often 9600 bps or less) bandwidth.[2]

[2] Note that CLDC stands for Connected Limited Device Configuration, not Connectivity-Limited Device Configuration. The difference between the CLDC and the CDC is not in the type or speed of the network connection.

· In addition, the device may have a user interface with some degree of sophistication, but a user interface is not mandatory.

The two products' configurations, along with some of their respective products, are shown in Figure 1-2.

Figure 1-2. J2ME architecture

[image: image7.png]anc o

Java 2micoedition

Note that although the two product groups are supported by different configurations, the line between the two configurations is somewhat blurred. In the future, technological advances will likely make this boundary more and more cloudy. However, for the moment, the important thing to remember is that the boundary between the CLDC and the CDC is defined in terms of the target device's memory budget, battery usage, and the presence or absence of a user interface.

1.1.3 Virtual Machines

As mentioned above, the CLDC and CDC configurations each define their own set of supported features from the Java virtual machine. Consequently, each requires its own Java virtual machine. The CLDC virtual machine is far smaller than the virtual machine required by the CDC, since it supports fewer features. The virtual machine for the CLDC is called the Kilo Virtual Machine (KVM), and the virtual machine for the CDC is called the CVM.

1.1.3.1 The KVM

The KVM is a complete Java runtime environment for small devices. It's a true Java virtual machine as defined by the Java Virtual Machine Specification, except for some specific deviations that are necessary for proper functioning on small devices. It is specifically designed from the ground up for small, resource-constrained devices with a few hundred kilobytes' total memory.

The KVM was originally created as a research project called "Spotless" at the Sun Microsystems Laboratories. The aim of the virtual machine was to implement a Java virtual machine for the resource-constrained Palm Connected Organizer.[3]

[3] In fact, early incarnations of the KVM contained several UI libraries based on the "spotless" graphical toolkit.

1.1.3.2 The CVM

The CVM is designed for larger consumer and embedded devices., such as those found with the CDC. It supports all Java 2 Version 1.3 virtual machine features and libraries for items such as security, weak references, JNI, and Remote Method Invocation (RMI). The reference implementation, currently available from Sun Microsystems, runs on Linux and VxWorks. You can download the reference implementation through the J2ME web site at http://java.sun.com/j2me/.

Initially, CVM was an acronym for "Compact" Virtual Machine. However, engineers at Sun Microsystems realized that snappy marketers (or poor spellers) may confuse the "compact" in CVM with the K in KVM. So, at present, the C does not stand for anything at all—it is simply known as the CVM.

1.1.4 Profiles

J2ME makes it possible to define Java platforms for vertical product markets by introducing profiles. At the implementation level, a profile is a set of APIs that reside on top of a configuration that offers the program access to device-specific capabilities. Following are some examples of profiles that are currently offered through J2ME.

1.1.4.1 The MIDP

The MIDP is designed to be used with the CLDC, and provides a set of APIs for use by mobile devices, such as cellular phones and two-way pagers. The MIDP contains classes for user interface, persistence storage, and networking. It also includes a standardized runtime environment that allows new applications to be "downloaded" to end user devices. Small applications that run under the MIDP are called MIDlets. Since this profile is already released, the vast majority of this book is dedicated to the MIDP.

1.1.4.2 The PDA profile

The PDA profile is based on the CLDC and provides user interface APIs (which are expected to be a subset of the AWT) and data storage APIs for handheld devices. As of this writing, the PDA profile is still in the works and no reference implementation is available yet.

1.1.4.3 The Foundation profile

The Foundation profile extends the APIs provided by the CDC, but it does not provide any user interface APIs. As the name "foundation" implies, this profile is meant to serve as a foundation for other profiles, such as the Personal profile and the RMI profile.

1.1.4.4 The Personal profile

The Personal profile extends the Foundation profile to provide a graphical user interface (GUI) capable of running Java Web applets. Since PersonalJava is being redefined as the Personal profile, it will be backward compatible with PersonalJava 1.1 and 1.2 applications. As of this writing, no reference implementation of the Personal profile is available.

1.1.4.5 The RMI profile

The RMI profile extends the Foundation profile to provide RMI for devices. Since it extends the Foundation profile, the RMI profile is meant to be used with the CDC/Foundation and not the CLDC/MIDP. The RMI profile will be compatible with J2SE RMI API 1.2.x or higher. However, as of this writing, no reference implementation is available yet.

Figure 1-3 shows a global snapshot of current and future J2ME technologies.

Figure 1-3. J2ME environment

[image: image8.png]RMI Personal

MDP PDA Foundation
anc c
Ko am

HostOperating System

1.2 Downloading the J2ME Wireless Toolkit

Now that you know your way around the J2ME landscape, let's get started with J2ME. However, before we can compile and run any J2ME programs, we need to download and install the J2ME Wireless Toolkit. You can obtain the J2ME Wireless Toolkit at the following URL: http://java.sun.com/products/j2mewtoolkit.

The version that we use in this book is 1.0.3 beta. It is available for the Microsoft Windows 98/ME and 2000 platforms, as well as Linux and Sun Solaris operating systems. The toolkit requires the presence of at least Version 1.3 of the Java Development Kit (JDK) for the host operating environment.

Once you've downloaded the Wireless Toolkit, double-click on it or execute the resulting binary (depending on your platform) to activate the extraction. This will uncompress the files needed to install the Wireless Toolkit. Note that you may be directed to specify an existing JDK installation on your system. If so, choose the latest stable release of the JDK that you currently have on your system.[4] In addition, the distribution may also ask you if you would like to install a version of the toolkit that interfaces with Forte[image: image9.png]

 for Java. If you would like to develop your J2ME applications in the Forte for Java Integrated Development Environment, choose the corresponding option. Be sure that Forte is already installed on your system before doing so.

[4] Try to use a JDK instead of just a Java Runtime Environment (JRE). It's important that you have the javac compiler to create J2ME applications.
In this case, we're going to install the Java Wireless Toolkit on a Windows platform into the directory C:\j2mewtk. After the installation is completed, this directory will contain all the required classes and tools to run the MIDP applications. (If the installation program asks you to run the ktoolbar program, just ignore it for the moment.) However, we need to do a few more things before we can get started with our examples.

First, we need to add the wireless toolkit binaries to your system path. You can do that on Windows with the following command (again, we've assumed that the Java Wireless Toolkit is installed at C:\j2mewtk):

SET PATH=%PATH%;C:\j2mewtk\bin

If you edit your C:\AUTOEXEC.BAT file to add this to the default system path, as shown below, and restart your machine, then you will not have to repeatedly perform this step each time you restart your system.

With Linux and Solaris, the equivalent command is:

export PATH=$PATH:install_directory/j2mewtk/bin

Once you've added that directory to your system path, you should be able to run the Java Wireless Toolkit tools from any directory on your system. An easy way to test it is to execute the preverify command, without any arguments. You should see output similar to the following:

C:\> preverify

Usage: PREVERIFY.EXE [options] classnames|dirnames ...

where options include:

 -classpath <directories separated by ';'>

 Directories in which to look for classes

 -d <directory> Directory in which output is written

 @<filename> Read command line arguments from a text file.

In order for the toolkit to work properly, you'll need to have the J2SE tools (notably javac) available on your system executable path as well. Instructions on how to do this are bundled with the JDK, although it really boils down to adding the binary path of the J2SE binaries to your system path.

	[image: image10.png]

	If you're familiar with the J2ME Wireless Toolkit already, you're likely wondering why we're not using KToolbar. We'll cover KToolbar in Chapter 4. In the meantime, it helps to see how J2ME works under the hood.

	

To compile and run J2ME programs from the command line, enter the following commands. Again, feel free to set these system environment variables on the command line, or edit the AUTOEXEC.BAT file (or similar) on your system for convenience.

SET J2MEWTK_HOME=C:\j2mewtk

SET MIDPAPI=%J2MEWTK_HOME%\lib\midpapi.zip

SET J2MECLASSPATH=%J2MEWTK_HOME%\wtklib\kenv.zip;

 %J2MEWTK_HOME%\wtklib\kvem.jar;%J2MEWTK_HOME%\wtklib\lime.jar

On the Linux and Solaris side, the following could be added to your .profile (or equivalent):

export J2MEWTK_HOME=/home/qmahmoud/j2mewtk

export MIDPAPI=$J2MEWTK_HOME/lib/midpapi.zip

export J2MECLASSPATH=$J2MEWTK_HOME/wtklib/kenv.zip:

 $J2MEWTK_HOME/wtklib/kvem.jar:$J2MEWTK_HOME/wtklib/lime.jar

Note the that final line in either case is really one line; it's been continued here for clarity.

1.3 A Simple Example

The examples that we're going to demonstrate here, and throughout the rest of the book, are called MIDlets. If you've programmed with Java applets or servlets before, then you'll likely recognize the similarities in the "fill-in-the-method" program structure. This first example, HelloMidlet.java, shown in Example 1-1, creates a text box and then prints the archetypal "Hello World" in a text box.

Example 1-1. "Hello World"

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HelloMidlet extends MIDlet {

 // The display for this MIDlet

 private Display display;

 // TextBox to display text

 TextBox box = null;

 public HelloMidlet() {

 }

 public void startApp() {

 display = Display.getDisplay(this);

 box = new TextBox("Simple Example", "Hello World", 20, 0);

 display.setCurrent(box);

 }

 /**

 * Pause is a no-op since there are no background activities or

 * record stores that need to be closed.

 */

 public void pauseApp() {

 }

 /**

 * Destroy must cleanup everything not handled by the garbage

 * collector. In this case there is nothing to cleanup.

 */

 public void destroyApp(boolean unconditional) {

 }

}

This MIDlet consists of a public class definition that extends the MIDlet class found in javax.microedition.midlet. This superclass forms the base of all MIDlets in J2ME. Our HelloMidlet class contains a constructor, as well as the startApp(), pauseApp(), and destroyApp() methods that have been inherited from the MIDlet class. Note that there is no main() method in this program. Instead, the startApp(), pauseApp(), and destroyApp() methods are called by the underlying framework to start up the MIDlet, to pause it, or to destroy it.

Let's start off by compiling our program on the command line. Using the command line is a bit more complex than the KToolbar application that comes with the Wireless Toolkit, so in order to simplify it, be sure that you have entered the additional environment variables shown above. However, there are several steps that we need to perform when compiling J2ME applications, and it's important to see each of the steps as they occur.

As you would expect, the program must be saved in a file called HelloMidlet.java. However, before you compile it, create a directory called tmpclasses. Then use the following command to compile the MIDlet from the command line in Windows:

C:\midlets> javac -g:none -d tmpclasses -bootclasspath %MIDPAPI% -classpath

 %J2MECLASSPATH% HelloMidlet.java

In Linux and Solaris, the command looks like the following:

>javac -g:none -d tmpclasses -bootclasspath $MIDPAPI -classpath $J2MECLASSPATH

 HelloMidlet.java

This command compiles the Java source file without any debugging info, and sets the appropriate boot and J2ME classpaths to ensure that we don't pick up any J2SE classes. The end result of this command is the creation of the HelloMidlet.class file in the tmpclasses directory.

With the J2SE, a class file was all you needed to run the application. However, all MIDlet classes must be preverified before they can be run on a target device. Why is this necessary? Remember that one of the tasks of the standard Java virtual machine (the one that comes with the J2SE) is to perform bytecode verification. Bytecode verification is one of the most important steps of the Java security model. It performs such tasks as ensuring that the bytecodes of a Java class (and their operands) are all valid; that the code does not overflow or underflow the VM stack; that local variables are not used before they are initialized; that field, method, and class access control modifiers are respected, and other important tasks. However, most of the bytecode verifier is not included with the KVM due to size constraints. The preverifier ensures that the equivalent security checks still take place.

Before you run the preverifier, create another directory called classes. Then, use this command to preverify the HelloMidlet class:

C:\midlets> preverify -classpath %MIDPAPI%;tmpclasses -d classes tmpclasses

Or on Solaris and Linux:

> preverify -classpath $MIDPAPI:tmpclasses -d classes tmpclasses

The resulting output should look something like this:

[Output directory for verified classes: classes]

This command takes all the classes inside the tmpclasses directory (of which HelloMidlet.class is the only one) and preverifies them, writing the resulting classes to the classes directory. Note that the names of the preverified classes remain exactly the same, which is why we created two separate directories to hold them.

	[image: image11.png]

	If you received an "Illegal constant pool index" class loading error and you're using JDK 1.4, try using JDK 1.3 until this issue is resolved.

	

The next step is to compress all the classes in the program (again, we have only one) as well as their resources, into a Java Archive (JAR) file. You can use the J2SE jar command to create a JAR file. Make sure you are in the classes directory to execute the following command:

> jar cvf HelloMidlet.jar HelloMidlet.class

The program will compress the HelloMidlet class into a JAR file, creating a manifest for it as well.

Note that with the javac compiler, you can create MIDlets of practically any size. However, that doesn't guarantee that they will fit on the target device for which you're writing the MIDlet. It would nice if there were a way to check if the target device can handle the MIDlet and run it before it is downloaded. Obviously, if a device can't handle the MIDlet, there is no reason to even attempt a download.

To accomplish this, we need a file that manually specifies some pre-download properties, including the size of the MIDlet and its storage requirements. This can be accomplished by creating a Java Application Descriptor (JAD) file with your favorite text editor. Example 1-2 shows a sample JAD file that we can use. Note that you will need to change the MIDlet-Jar-Size entry to correspond to the size of the JAR file that you just created. (In Chapter 3, we will explain the JAD file syntax in more detail.)

Example 1-2. HelloMidlet.jad

MIDlet-1: Hello,,HelloMidlet

MIDlet-Name: HelloMidlet

MIDlet-Version: 1.0

MIDlet-Vendor: ORA

MIDlet-Jar-URL: HelloMidlet.jar

MIDlet-Jar-Size: 863

Let's save this example JAD file as HelloMidlet.jad, again in the classes directory that holds the JAR file. Finally, to run this MIDlet, invoke Sun's MIDP emulator to point at the JAD file using the following command:

> emulator -Xdescriptor:HelloMidlet.jad

If everything worked correctly, you should see a phone similar to Figure 1-4, although the display may be different. Here, the HelloMidlet is running in the default phone that comes with the Java Wireless Toolkit. If you click on the MIDlet on the menu (use the directional arrow pad to move the cursor and the button in the middle to select), and instruct it to "Launch" using the soft button on the lower right, you should see output similar to Figure 1-4. Congratulations! You just created your first Java MIDlet!

Figure 1-4. HelloMidlet

[image: image12.png]

The gist of this program is in the startApp() method. Here, we obtain the current display that the device uses, then create a text box with the words "Hello World" inside of it. Finally, we show the text box on the current display. Don't worry if you don't understand these objects yet; the architecture of MIDlets will become clearer as we move through the book.

1.3.1 A Login MIDlet

Let's move to a more advanced MIDlet. Example 1-3 shows a MIDlet with a hypothetical login screen that prompts the user to log in. If the login is incorrect, the program will repeatedly ask the user to try again.

Example 1-3. A login MIDlet

import javax.microedition.midlet.MIDlet;

import javax.microedition.lcdui.*;

public class LoginMidlet extends MIDlet implements CommandListener {

 private Display display;

 private TextField userName;

 private TextField password;

 private Form form;

 private Command cancel;

 private Command login;

 public LoginMidlet() {

 userName = new TextField("LoginID:", "", 10, TextField.ANY);

 password = new TextField("Password:", "", 10, TextField.PASSWORD);

 form = new Form("Sign in");

 cancel = new Command("Cancel", Command.CANCEL, 2);

 login = new Command("Login", Command.OK, 2);

 }

 public void startApp() {

 display = Display.getDisplay(this);

 form.append(userName);

 form.append(password);

 form.addCommand(cancel);

 form.addCommand(login);

 form.setCommandListener(this);

 display.setCurrent(form);

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 notifyDestroyed();

 }

 public void validateUser(String name, String password) {

 if (name.equals("qm") && password.equals("j2")) {

 menu();

 } else {

 tryAgain();

 }

 }

 public void menu() {

 List services = new List("Choose one", Choice.EXCLUSIVE);

 services.append("Check Mail", null);

 services.append("Compose", null);

 services.append("Addresses", null);

 services.append("Options", null);

 services.append("Sign Out", null);

 display.setCurrent(services);

 }

 public void tryAgain() {

 Alert error = new Alert("Login Incorrect", "Please try again", null,

 AlertType.ERROR);

 error.setTimeout(Alert.FOREVER);

 userName.setString("");

 password.setString("");

 display.setCurrent(error, form);

 }

 public void commandAction(Command c, Displayable d) {

 String label = c.getLabel();

 if(label.equals("Cancel")) {

 destroyApp(true);

 } else if(label.equals("Login")) {

 validateUser(userName.getString(), password.getString());

 }

 }

}

Again, don't worry if you can't understand the entire program at this point; this example is just meant to give you a flavor of MIDP programming and some sample applications to compile and run. Chapter 5 and Chapter 6 will explain the GUI classes (such as Display, Form, and TextField), as well as the event-handling classes (such as Command) in much more detail.

That being said, let's present a beginner's overview of how this MIDlet works. As in the previous example, LoginMidlet extends the MIDlet abstract class. It also implements the CommandListener interface by providing an implementation for the commandAction() method. In this method, there are two commands: Login and Cancel. The label of the command is checked: if it is Cancel, the LoginMidlet is destroyed, and if it is Login, then the username and passwords are validated.

In the LoginMidlet's constructor, a Form object, two TextField objects, and two Command objects are created. The TextField and Command objects are added to the form in the startApp() method. In addition, pauseApp() and destroyApp() perform minimal tasks.

Here is how the program operates: if the Login command is given, the application calls the validateUser() method to validate the username and password. If they are valid (in this case, they are hardcoded into the program for simplicity), then the menu() method is called to simulate a list of "useful services." Otherwise, the tryAgain() is called to display an error message and to allow the user to reenter their name and password.

If you are using the command line to compile and execute, save this file named LoginMidlet.java, make sure that you have a classes and a tmpclasses directory, and use javac:

C:\midlets> javac -g:none -d tmpclasses -bootclasspath %MIDPAPI% -classpath

 %J2MECLASSPATH% LoginMidlet.java

If you are using Solaris or Linux, the command becomes:

>javac -g:none -d tmpclasses -bootclasspath $MIDPAPI -classpath $J2MECLASSPATH

 LoginMidlet.java

Next, remember that we must preverify the resulting class:

C:\midlets> preverify -classpath %MIDPAPI%;tmpclasses -d classes tmpclasses

or

> preverify -classpath $MIDPAPI:tmpclasses -d classes tmpclasses

Again, the preverified class is saved to the classes subdirectory in the current directory. Next, compress the resulting class into a JAR file:

 jar cvf LoginMidlet.jar LoginMidlet.class

And finally, create a JAD file that describes the resulting JAR file in detail, as shown in Example 1-4.

Example 1-4. LoginMidlet.jad

MIDlet-1: Login,,LoginMidlet

MIDlet-Name: LoginMidlet

MIDlet-Version: 1.0

MIDlet-Vendor: ORA

MIDlet-Jar-URL: LoginMidlet.jar

MIDlet-Jar-Size: 1786

Again, don't forget to change the size of the JAR file to match the size of the LoginMidlet.jar file after you create it.

At this point, the MIDlet can be run as in the previous example, using the MIDP emulator of the Java Wireless Toolkit, with the following command:

emulator -Xdescriptor:LoginMidlet.jad

In addition, the MIDlet can be run with any other emulator you may have available. For example, to whet your appetite, Figure 1-5 shows the LoginMidlet running on the Motorola i85s emulator (the i85s is a J2ME-enabled cell phone available from Motorola and Nextel).

Figure 1-5. LoginMidlet running in the Motorola i85s emulator (cropped)

[image: image13.png]

1.3.2 Working with the Emulator

Note that the objects represented by the Command class are shown above the two "soft buttons" on the phone (the buttons with the black circles). If a soft button below the command is pressed, the command immediately above it is executed. Here, if the user enters the correct username and matching password and presses the Login button, the menu of services will be displayed. Otherwise, the alert will be displayed and the user can try again.

Also, you might be caught off guard the first time you try to enter text with your computer keyboard. It doesn't work! That's because you must use the input keys on the phone to enter the text. In this case, to enter the letter "G", press the number "4." To enter the letter "K", press the number "5" twice. Note how each time you press a numeral, the system "cycles" through the letter corresponding to that number. To move down to entering text for the password, use the down arrow.

Well, that's it! You've just created two professional MIDlets using J2ME! In the next two chapters, we're going to take a much closer look at the CLDC and the MIDP, two exciting new areas of wireless Java development.

Chapter 2. The Connected Limited Device Configuration (CLDC)

The Connected Limited Device Configuration (CLDC) defines a standard, minimum-footprint Java platform for small, resource-constrained devices. As we mentioned in Chapter 1, the CLDC was designed as a lowest common denominator of Java that can be applicable to a wide variety of devices. However, features specific to a certain vertical market, such as cell phones or pagers, are not found in the CLDC but are instead defined in profiles that sit above it. Configurations primarily target devices with similar amounts of memory and processing power.

This leads to a very important point about the CLDC: there are no optional features. Everything that the CLDC provides is usable on the devices that support it. After all, the primary goal of the CLDC is to ensure portability and interoperability between applications running on various kinds of resource-constrained devices, which is the main objective of programming in Java. In this chapter, we discuss the CLDC and its virtual machine, the KVM, in detail.

2.1 Examining the CLDC in Detail

Let's start off with some specifics. According to the specification, the devices targeted by the CLDC have the following characteristics:

160 KB to 512 KB of total memory

At a minimum, a CLDC device should have 128 KB of non-volatile memory for the Java VM and the CLDC libraries, and at least 32 KB of volatile memory for the VM to use at runtime, independent of any applications.

16-bit or 32-bit processor with at least 25 Mhz speed

These types of processors are pretty typical in today's handheld devices.

Connectivity to some kind of networking

With CLDC, this is often a two-way wireless connection with limited bandwidth.

Low power consumption

CLDC devices often operate under battery power. Hence, they have very low power consumption.

Devices that fit these characteristics come in all shapes and sizes. Cell phones and pagers immediately come to mind, but one could also install Java on bar code scanners, video and audio equipment, navigation systems, and other wireless devices yet to come. In fact, as the nature of these devices changes, you can expect that the base specifications for the CLDC will change as well.

Given the constraints listed above, the CLDC currently provides the following functionality to its devices:

· A subset of Java language and virtual machine features

· A subset of core Java libraries (java.lang and java.util)

· Basic input/output (java.io)

· Basic networking support (javax.microedition.io)

· Security

Note, however, that the CLDC does not address application life cycle management, user interfaces, event handling, or the interaction between the user and the application. Again, these features fall into the domain of profiles, such as the MIDP, which are implemented on top of the CLDC and add to its functionality.

2.1.1 What's Different About the Java Virtual Machine?

We mentioned that the CLDC does not have any optional features. As you might expect, this means that a number of features have been eliminated from Java virtual machines that support the CLDC, either because they are too expensive (in terms of memory or processing capability) to implement, or because their presence would impose security problems. Therefore, if you're new to programming with the CLDC, you should be aware of the following limitations in CLDC VMs:

No floating point support

The CLDC does not support floating point numbers; therefore, CLDC-based applications cannot use floating point types such as float or double. This decision was made because most CLDC target devices do not have floating point support in their underlying hardware.

No finalization

The CLDC API currently does not include the Object.finalize() method; you cannot perform final cleanup operations on object data—-such as closing resources—before an object is garbage-collected.

Limited error handling

Runtime errors are handled in an implementation-specific manner. The CLDC defines only three error classes: java.lang.Error, java.lang.OutOfMemoryError, and java.lang.VirtualMachineError. Non-runtime errors are handled in a device-dependent manner that often involves terminating the application or even resetting the device.

No Java Native Interface (JNI)

A Java virtual machine supporting the CLDC does not implement the JNI. There are actually two good reasons for this: security, and the fact that implementing JNI is expensive, given the memory constraints of CLDC target devices.

No user-defined class loaders

A Java virtual machine supporting the CLDC must have a built-in class loader that cannot be overridden or replaced by the user. This is for security reasons.

No support for reflection

CLDC applications do not have the ability to use the reflection APIs on their objects or classes. Because reflection is not supported, there is also no support for object serialization or RMI.

No thread groups or daemon threads

While a Java virtual machine that supports the CLDC will implement multithreading, it cannot support thread groups or daemon threads. If you want to perform thread operations for groups of threads, use the collection objects to store the thread objects at the application level.

No weak references

No application built on a Java virtual machine supporting the CLDC can require weak references.

2.1.2 The KVM

The KVM, which was introduced in the previous chapter, is a complete Java runtime environment for small devices. It is a true Java virtual machine as defined by the Java Virtual Machine Specification, except for some deviations that are necessary for proper functioning on small devices. The KVM was specifically designed for small, resource-constrained devices that have only a few hundred kilobytes total memory.

The J2ME white paper[1] describes the KVM as:

[1] See also the KVM white paper, located at http://java.sun.com/products/cldc/wp/KVMwp.pdf, for much more detail on the KVM.

· Designed for both 16-bit and 32-bit CISC or RISC processors and clocked at processors as low as 25 Mhz

· Small, with a static memory footprint of 50 to 80 KB

· Highly portable, modular, and customizable

· As complete and fast as possible, without sacrificing the other design goals listed above

The KVM was derived from a research project called Spotless at Sun Microsystems Laboratories. The aim of the project was to implement a Java system for the Palm Connected Organizer.[2] The KVM is written in the C programming language (using about 24,000 lines of code), so it can be easily ported to various platforms for which a C-language compiler is available. Finally, like a regular JVM, the KVM can load classes from a class path directory as well as from a JAR file.

[2] If you attended JavaOne 1999, you'll remember that this was a major attraction. They even held a contest to see who could design the best KVM application.

2.1.2.1 Class Verification

In the J2SE Java virtual machine, the class verifier is responsible for rejecting invalid class files at runtime. A JVM supporting CLDC must be able to reject invalid class files as well. The class verification process, however, is expensive and time-consuming: it typically takes anywhere from 35 to 110 KB of runtime memory. Since the target size of the KVM is 50 to 80 KB of memory, including a class verifier inside it would violate its size constraints.

The KVM designers decided to move most of the verification work off the device and onto the desktop, where the class files are compiled, or onto the server machine, from which applications are downloaded. This step (off-device class verification) is referred to as preverification; that's why we had to run the preverify command on the examples in Chapter 1. Once the preverification is completed, the resulting class files often include extra information to ensure that the runtime verifier can perform its job with only minimal effort and memory. (That's why the preverified version of the LoginMidlet.class in Chapter 1 is slightly larger than the raw class generated by the javac compiler.)

The additional output of the preverification process is the addition of a stack map attribute that maps out critical areas of a class. This additional attribute is used by the runtime verifier to pinpoint critical areas inside the class that must be checked. Also, the preverifier will inline all subroutines in the bytecodes of the class file to prevent any problems at runtime. Don't worry, however. Even with the additional information, the preverified class files can still work with a regular Java runtime verifier.

With the help of the preverification, the CLDC device is only responsible for running a quick scan on the preverified class file to ensure that it was verified and does not contain any illegal instructions. This cuts down significantly on the amount of memory needed for the runtime verifier: only 100 bytes or so.

2.1.2.2 Security

The CLDC security model is more strict than what you're likely used to with the J2SE. This new security model is primarily concerned with two areas:

Virtual machine-level security

An application executed by the KVM must not be able to harm the device in which it is running. This is guaranteed by the class verifier, which ensures that the class bytecodes cannot contain references to invalid memory locations. It also ensures that the classes loaded cannot execute in a way that is not allowed by the Java Virtual Machine Specification. As we mentioned, class verification for the CLDC/KVM is a two-step process: off-device preverification in conjunction with a minimal in-device verification. In addition, native methods cannot be invoked at runtime.

Application-level security

Unlike the J2SE, the CLDC/KVM combination does not allow the customization of a security manager. A JVM supporting CLDC provides a simple sandbox security model that enforces security by ensuring that applications run in a closed environment, and that applications may only call classes supported by the device.

2.1.3 What's Different About the Core Java Libraries?

The first thing that you'll probably notice when working with the CLDC is that only a bare minimum of Java APIs have been included. The reason for this is obvious if you download the Java 2 SDK: the standard edition APIs require close to 20 megabytes of memory! This is memory that most small devices simply do not have. Hence, one of the primary goals in designing the core CLDC libraries was to boil the J2SE APIs off into a minimum set of libraries that could still be used for meaningful application and profile development.

With that in mind, it's helpful to think of the CLDC library APIs as divided into two categories: classes that are a subset of the J2SE APIs and new classes that are specific to the CLDC. Let's look at the former group first.

2.1.3.1 Classes inherited from J2SE

The CLDC uses only thirty-seven classes from the J2SE platform. These classes come from the java.lang, java.io, and java.util packages, which are derived from JDK 1.2 APIs. Note that according to the J2ME specification, "Each class that has the same name and package name as a J2SE class must be identical to, or a subset of, the corresponding J2SE class. The semantics of the classes and methods cannot be changed, and the classes cannot add any public or protected methods or fields that are not available in the corresponding J2SE class libraries." In other words, you cannot add, but you can take away. And many classes have functionality taken away.

The inherited classes and interfaces (not including exceptions) from the J2SE platform are shown in Table 2-1.

	Table 2-1. Inherited, non-exceptional classes

	Package
	Classes

	java.lang
	Boolean, Byte, Character, Class, Integer, Long, Math, Object, Runnable, Runtime, Short, String, StringBuffer, System, Thread, Throwable

	java.io
	ByteArrayInputStream, ByteArrayOutputStream, DataInput, DataOutput, DataInputStream, DataOutputStream, InputStream, OutputStream, InputStreamReader, OutputStreamWriter, PrintStream, Reader, Writer

	java.util
	Calendar, Date, Enumeration, Hashtable, Random, Stack, TimeZone, Vector

Because all inherited classes must throw precisely the same exceptions as regular J2SE classes, the following 29 exception and error classes shown in Table 2-2 also derive from the J2SE APIs.

	Table 2-2. Inherited exception and error classes

	Package
	Class

	java.lang
	ArithmeticException, ArrayIndexOutOfBoundsException, ArrayStoreException, ClassCastException, ClassNotFoundException, Error, Exception, IllegalAccessException, IllegalArgumentException, IllegalMonitorStateException, IllegalThreadStateException, IndexOutOfBoundsException, InstantiationException, InterruptedException, OutOfMemoryException, NegativeArraySizeException, NumberFormatException, NullPointerException, RuntimeException, SecurityException, StringIndexOutOfBoundsException, VirtualMachineError

	java.io
	EOFException, IOException, InterruptedIOException, UnsupportedEncodingException, UTFDataFormatException

	java.util
	EmptyStackException, NoSuchElementException

When programming with the CLDC, there are many internal modifications to the J2SE classes you're used to. Here are some of the more common classes that may cause problems.

2.1.3.2 String and StringBuffer

The following methods have been removed from the ubiquitous java.lang.String class, either because they refer to floating-point data types or because their presence is redundant:

public void valueOf(float f)

public void valueOf(double d)

public int compareToIgnoreCase(String str)

public boolean equalsIgnoreCase(String anotherStr)

public static copyValueOf(char[] data)

public static String copyValueOf(char[] data, int offset,

 int count)

public String intern()

public int lastIndexOf(String str)

public int lastIndexOf(String str, int fromIndex)

public boolean regionMatches(int toffset, String other,

 int ooffset, int len)

public String toLowerCase(java.util.Locale locale)

public String toUpperCase(java.util.Locale locale)

For the same reasons, the following methods have been eliminated from the java.lang.StringBuffer class.

public StringBuffer append(float f)

public StringBuffer append(double d)

public StringBuffer insert(int offset, float f)

public StringBuffer insert(int offset, double d)

public StringBuffer insert(int index, char[] str,

 int offset, int len)

public StringBuffer replace(int start, int end, String str)

public String substring(int start)

public String substring(int start, int end)

2.1.3.3 Runtime

The java.lang.Runtime class has eliminated most of its methods for the CLDC. Here, only the following subset of methods is now available:

public void exit(int status);

public native long freeMemory();

public native void gc();

public static Runtime getRuntime();

public native long totalMemory();

2.1.3.4 System

In addition, the java.lang.System class only has the following fields and methods available to it:

public static final PrintStream err;

public static final PrintStream out;

public static native void arraycopy(Object src,

 int src_position, Object dst, int dst_position, int length);

public static native long currentTimeMillis();

public static void exit(int status);

public static void gc();

public static String

getProperty(String key);

public static native int identityHashCode(Object x);

2.1.3.5 Math

Finally, as you might expect, the java.lang.Math class has eliminated all methods dealing with complex floating-point operations (which was the vast majority of methods in that class), and now only has the following methods:

public static int abs(int a);

public static long abs(long a);

public static int max(int a, int b);

public static long max(long a, long b);

public static int min(int a, int b);

public static long min(long a, long b);

In many cases, the absence of these methods are only a minor inconvenience and suitable workarounds can be used. J2ME functionalities that require the use of floating-point values, however, may have to expand their floating-point values to integers with an implied decimal point and improvise with the more limited set of integer operations.

2.1.4 What's Different About I/O and Networking?

Recall that the J2SE provides the java.io and java.net packages for I/O and network connectivity. The CLDC inherits some of the classes in the java.io package. However, the major difference is that it does not inherit classes related to file I/O. For example, the popular FileInputStream and FileOutputStream classes are not present. In addition, the FileReader and FileWriter classes are not offered for reading and writing text data. This is because not all CLDC devices support the concept of a filesystem.

As for the java.net package, the J2SE provides several classes for network connectivity. However, none of these classes have been inherited because not all devices require TCP/IP or UDP/IP. (Some devices may not even have an IP stack.) Instead, the CLDC expert group decided to define a more generic set of classes for J2ME I/O and network connectivity. These classes are known as the Generic Connection Framework, and are found in the javax.microedition.io package.

2.1.4.1 The Generic Connection Framework

The Generic Connection Framework is a platform-independent framework that provides its functionality without any dependence on the specific features of a device. In fact, this framework is so generic that it doesn't implement any of the I/O or network connectivity interfaces; rather, the profile above it provides such implementation.

Here's a quick rundown of how the Generic Connection Framework works: all connections are created using the static open() method from the factory Connector class. If successful, this method returns an object that implements one of the generic connection interfaces for the host device. If you're a J2SE programmer, this will be much different than what you're used to. However, it will also be much easier. To give you a taste of what this is like, here are some example connections from the J2ME specification that you might request from a CLDC application and the appropriate syntax to implement them:

HTTP connection

Connector.open("http://www.ora.com:port");

Socket connection

Connector.open("socket://www.ora.com:port");

Communication with a port

Connector.open("comm:0;baudrate=9600");
The goal of the above syntax is to isolate any differences in the protocol that you're attempting to connect with into a simple string. This way, most of the application's code remains the same, regardless of the protocol you use. The Generic Connection Framework is discussed in more detail in Chapter 7.

2.1.5 Differences with Property Support in the CLDC

Virtual machines that support the CLDC, such as the KVM, do not implement the java.util.Properties class, which follows from the lack of filesystem functionality that we mentioned above. However, four system properties are supported for each J2ME/CLDC device, and can be accessed by using the method System.getProperty(String key). The four properties available are described in Table 2-3.

	Table 2-3. System properties

	System property
	Description
	Default value

	microedition.platform
	Name of the host platform or device
	null

	microedition.encoding
	Default character encoding
	"ISO8859_1"

	microedition.configuration
	Name and version of the support configuration
	"CLDC-1.0"

	microedition.profiles
	Name of the supported profiles
	null

There's very little to say here, except that you can use these properties to ensure that you're indeed on a CLDC device that supports the proper encoding and profiles for your application. The MIDP profile defines some additional properties, which we will discuss in Chapter 3.

2.2 Using the Standalone CLDC and KVM

If you want to experiment with the raw KVM and CLDC classes, you can download the standalone CLDC and KVM. As of this writing, the latest edition of the CLDC itself is version 1.0.2. The CLDC 1.0.2 contains an updated version of the KVM. The KVM code has been rewritten to improve performance and includes a faster bytecode interpreter, better garbage collection, Java-level debugging APIs, preverifier improvements, and several bug fixes. If you wish to download the standalone CLDC and KVM, you can find it at the following address: http://java.sun.com/products/kvm.

	[image: image14.png]=

	Note that this is different than the J2ME Wireless Toolkit that we used in Chapter 1. This distribution does not contain any MIDP classes, nor does it contain a MIDP emulator. Hence, it will only execute programs that adhere to the base CLDC specification and not any MIDP functionality. If you are solely interested in writing applications for the MIDP, you can just read through this section without taking any action.

	

This distribution contains KVM implementations for Windows, Solaris, and Linux operating systems, as well as the CLDC classes that can be used to compile and run applications. After downloading and uncompressing the distribution, you should have a series of directories, as shown in Table 2-4.

	Table 2-4. CLDC/KVM directories

	Directory
	Description

	api
	The Java classes and source code for the CLDC

	bin
	Binaries for each of the target platforms

	build
	Utility that builds directories and makefiles for each target platform

	docs
	PDF documentation, as well as compressed javadocs

	jam
	Java Application Manager, which can be used to dynamically download classes into the KVM

	kvm
	Source and build files pertaining to the KVM

	samples
	Sample code that can be used with the CLDC

	tools
	Source for the various tools used with the CLDC

Feel free to look through the api directory to see what you have. It's not much, compared to the J2SE. In any case, there are some interesting things that we can show you with the KVM and the CLDC in this distribution. First, create a simple program that can be run with the CLDC as follows:

public class CLDCTest {

 public static void main(String[] args) {

 System.out.println("Hello CLDC!");

 }

}

Then, try compiling the program with the standard javac compiler. In the example below, we use a command line, similar to that in the first chapter, in order to ensure that only the CLDC classes are used. Note that the subsequent series of commands assumes that you are in the base directory of the CLDC/KVM distribution:

javac -bootclasspath api/classes.zip CLDCTest.java

Remember that we must preverify our resulting class before running it with the KVM, like we did in Chapter 1. You can do so with the following command:

bin/[targetOS]/preverify -classpath api/classes.zip:. CLDCTest

As before, this should create a separate directory, here called output, where the preverified class has been stored. You can now run this class with the KVM, using the following command:

bin/[targetOS]/kvm -classpath api/classes.zip:output CLDCTest

Hello CLDC!

Next, try modifying the source code so that it adds a declaration of the float variable:

public class CLDCTest {

 float f;

 public static void main(String[] args) {

 System.out.println("Hello CLDC!");

 }

}

And again, try recompiling it and preverifying it with the above commands. If you try running the resulting program, the KVM will flag the inclusion of a floating-point field in the class as an error:

ALERT: Bad field signature

Why didn't the compiler flag the use of the floating-point variable as an error? Remember that you're using the javac compiler from J2SE to compile your J2ME programs, and that compiler is all too familiar with the use of floating-point variables. Hence, it will assume that the primitive data types that it knows about are fine for use with whatever JVM is on the other side of the compilation. In addition, the preverifier will not search for floating-point variables because its job (at least, on the desktop side) is to look for security issues within classes, not to hunt down invalid primitive data types. (Remember we mentioned earlier that preverified class files must work under the regular J2SE.) Hence, the KVM itself has to tell us that one of our fields is not supported in the virtual machine, which it does by scanning through the class files before executing them. There's an important lesson here: just because the compiler and preverifier successfully translated a source file to a class with only the CLDC classes on its bootclasspath doesn't mean that it will still run. You should always test it with the KVM as well, to see if the code has any VM issues.

That's not to say that if we used a method that is no longer in the CLDC classes, the compiler wouldn't notice. For example, assume that we modified our code to be the following:

public class CLDCTest {

 static String s = "Hello CLDC!";

 static int r = s.compareToIgnoreCase("HELLO CLDC!");

 public static void main(String[] args) {

 System.out.println(s + ":" + r);

 }

}

This yields the following compiler error:

CLDCTest.java:4: cannot resolve symbol

symbol: method compareToIgnoreCase(java.lang.String)

location: class java.lang.String

Here, the compiler flagged an error because the String class that was located on its bootclasspath does not contain the method in question, compareToIgnoreCase(). As we mentioned earlier in the chapter, this method has been omitted in the CLDC subset of java.lang.String.

2.3 CLDC Next Generation

Finally, let's briefly mention the CLDC Next Generation (NG). The CLDC NG is a specification that is currently in development and that aims to define a revised version of the CLDC. The goal of the CLDC NG is to make the CLDC more compliant with the Java language and virtual machine specifications by reintroducing features such as floating-point support and improved error-handling capabilities.

Some other goals of the CLDC NG will be to:

· Maintain backward compatibility with CLDC 1.0.

· Maintain small footprint (limit API growth).

· Continue focus on small, resource-constrained, connected devices.

· Investigate the possibility of adding a minimal security manager.

Note, however, that not many new APIs will be reintroduced to the CLDC with this revision. Devices that require significantly more complete Java libraries should use the Connected Device Configuration (CDC) instead. You can follow the progress of the CLDC NG at the Java Community Process web site at: http://www.jcp.org/.

Chapter 3. The Mobile InformationDevice Profile (MIDP)

The Mobile Information Device Profile (MIDP) is built on top of the CLDC, and defines an open application development environment for what Sun calls Mobile Information Devices (MIDs). In simpler terms, MIDP is the J2ME profile that is used for wireless devices, such as mobile phones and pagers. This chapter expands on the previous chapter by introducing some of the fundamental concepts of MIDP and offering programming guidelines that are used throughout the remainder of this book.

As we mentioned in Chapter 1, the MIDP is governed by the Java Community Process. The MIDP is JSR 37, which is part of the Java Community Process. Like the CLDC, the MIDP is an ever-changing standard that actively solicits input from corporations and the general programming community. You can find more information on the MIDP at the following URL: http://java.sun.com/products/midp.

3.1 Mobile Information Devices

Again, let's start off with some specifics. The MIDP standard defines a MID as a device with the following minimum characteristics:

Display

A screen size of at least 96 x 54 pixels with at least a 1-bit display depth

Input

A one-handed keyboard, two-handed keyboard, or touch screen

Memory

32 KB of volatile memory for the Java runtime (heap); 128 KB of non-volatile memory for the MIDP components; and 8 KB of non-volatile memory for application-created persistent data

Networking

A two-way intermittent connection, usually wireless, with limited bandwidth

Because the MIDP is built on top of the CLDC, it addresses the following areas that are omitted by the CLDC:

Application Life Cycle Management

The MIDP includes the javax.microedition.midlet package, which contains classes and methods for starting, pausing, and destroying applications in the host environment.

User Interface and Events

The MIDP also provides the javax.microedition.lcdui packages, which include classes and interfaces for creating GUI components for applications.

Network Connectivity

The MIDP extends the ContentConnection interface of the Generic Connection Framework by providing the HttpConnection interface, as well as a subset implementation of the HTTP protocol.

Storing Data on Device

The MIDP also provides the javax.microedition.rms package, which implements a record-based database management system. This provides applications with the capability to store data on the device.

The MIDP has received wide corporate backing, from companies such as AOL, DDI, Ericsson, Fujitsu, Hitachi, Matsushita, Mitsubishi, Motorola, NEC, Nokia, NTT DoCoMo, Palm, Research in Motion (RIM), Samsung, Sharp, Siemens, Sony, Sprint, and Symbian. In the second quarter of 2001, Motorola released the first MIDP-enabled cellular phones, the i50x and the i85s.[1] Over the next year or two, you'll likely see an impressive amount of MIDP-enabled devices reach the market.

[1] The service for the i50x and i85s phones is provided in the United States and Canada by Nextel, Inc.

3.1.1 Class Additions

The MIDP adds the following packages to those available through the CLDC, as shown in Table 3-1.

	Table 3-1. New packages in the MIDP

	Package
	Description

	javax.microedition.lcdui
	Graphical interface components and events

	javax.microedition.midlet
	Application life cycle

	javax.microedition.rms
	Record storage

Here are the classes that are included with each of the new packages. The first package, javax.microedition.lcdui, contains interfaces and classes, listed in Table 3-2, that are used to build graphical interfaces on the limited displays of CLDC devices. These classes are discussed in detail in Chapter 5 and Chapter 6.

Classes and interfaces in the javax.microedition.lcdui package

	Name
	Type

	Choice
	Interface

	CommandListener
	Interface

	ItemStateListener
	Interface

	Alert
	Class

	AlertType
	Class

	Canvas
	Class

	ChoiceGroup
	Class

	Command
	Class

	DateField
	Class

	Display
	Class

	Displayable
	Class

	Font
	Class

	Form
	Class

	Gauge
	Class

	Graphics
	Class

	Image
	Class

	ImageItem
	Class

	Item
	Class

	List
	Class

	Screen
	Class

	StringItem
	Class

	TextBox
	Class

	TextField
	Class

	Ticker
	Class

The next package, javax.microedition.midlet (see [click here]), adds only one class that serves as the base class for all MIDlets. This class can only throw one exception as well, which notifies listeners of a state change in the MIDlet. This class is discussed in detail in Chapter 4.

Class and exception in the javax.microedition.midlet package

	Name
	Type

	MIDlet
	Class

	MIDletStateChangeException
	Exception

Finally, the javax.microedition.rms package provides four interfaces, one class, and five exceptions (see Table 3-4) for performing persistent data storage on MIDP devices. The four interfaces allow you to create implementing classes that customize how the record store compares, enumerates through, filters, and handles events that occur with data records. These classes are discussed in detail in Chapter 8.

The classes, interfaces, and exceptions in the javax.microedition.rms package

	Name
	Type

	RecordComparator
	Interface

	RecordEnumeration
	Interface

	RecordFilter
	Interface

	RecordListener
	Interface

	RecordStore
	Class

	InvalidRecordIDException
	Exception

	RecordStoreException
	Exception

	RecordStoreFullException
	Exception

	RecordStoreNotFoundException
	Exception

	RecordStoreNotOpenException
	Exception

In addition to these packages, the MIDP also adds two classes and one exception to those classes in the java.lang and java.util packages of the CLDC. These classes are similar to those found in the Java SDK 1.3.

· java.lang.IllegalStateException (exception)

· java.util.Timer (class)

· java.util.TimerTask (class)

As you can see, there aren't many classes in the MIDP. However, that's not unexpected, given that we need to fit MIDP programs in such a limited space. But don't worry. We'll discuss each of the new classes, interfaces, and exceptions of the MIDP as we progress through the remainder of the book.

3.1.2 System Properties

The MIDP defines two additional property values (in addition to the eight in the previous chapter) that can be retrieved using the java.lang.System.getProperty() method. These are shown in Table 3-2:

	Table 3-2. System properties defined by the MIDP

	System property
	Description

	microedition.local
	The current locale of the device (default: null)

	microedition.profiles
	Must contain at least "MIDP-1.0"

The microedition.local property consists of the language and country code separated by a dash "-". For example, "en-CA" for English Canada and "en-US" for English USA. Note that the language code must be lowercase, and the country code must be uppercase.

3.2 More About MIDlets

In Chapter 1, we introduced you to MIDlets, applications that run on MIDP devices. MIDlets are written as one or more Java classes whose objects are compressed into a JAR file. Like Java applets, MIDP applications have an application life cycle while running on a mobile device. Specifically, a MIDlet can be in one of three states:

· Paused

· Active

· Destroyed

Figure 3-1 shows the rules for transitioning between states.

Figure 3-1. MIDlet transition states

[image: image15.png]vl

Paused

Active

Desrojed

Here is a quick rundown of how MIDP applications change state: when a MIDlet is first started, it is placed in the paused state. After it's ready, the controlling software will then place the MIDlet in the active state. At this point, the MIDlet is running and the user can interact with it. The application can be placed back in the paused state by either the MIDP system or the program itself. In addition, the MIDP can be moved to the destroyed state from either the paused or the active state, again by either the MIDP system or the programmer. In the destroyed state, the MIDlet should release all of the resources it currently has back to the MIDP system.

We'll cover this in more detail in the following chapter, where we create and execute a MIDlet with multiple states. In the meantime, this quick introduction brings us to the point where we must first introduce some important concepts.

3.2.1 What Is a MIDlet Suite?

A MIDlet suite is simply two or more MIDlets that are packaged in a JAR file. MIDlets within the same suite can use the classes and resources contained in the JAR file, much like any standard Java application, the classes of which are loaded by the same class loader.

3.2.1.1 The JAR Manifest

The JAR file of a MIDlet suite often contains a manifest file with MIDlet attributes defined. These attributes describe the contents of the JAR file, which is in turn used by the application management software to identify and install the MIDlet suite. The attributes defined by the MIDP specification are listed in Table 3-3.

	Table 3-3. JAR manifest attributes

	Attribute name
	Required
	Description

	MicroEdition-Configuration
	Yes
	The name and version of the J2ME configuration required. This uses the same format as the MicroEdition.configuration system property (for example, "CLDC-1.0").

	MicroEdition-Profile
	Yes
	The name and version of the J2ME profile required. This uses the same format as the microedition.profiles system property (for example, "MIDP-1.0").

	MIDlet-n
	Yes
	The name, icon, and class, separated by commas, of the nth MIDlet in the MIDlet suite.

	MIDlet-Data-Size
	No
	The minimum number of bytes of persistent storage that the MIDlet requires. The default is zero.

	MIDlet-Description
	No
	A description of the MIDlet suite.

	MIDlet-Icon
	No
	The pathname of a PNG file within the JAR file to identify the MIDlet suite (not the individual MIDlets). It is used by the application management software to display an icon to identify the suite.

	MIDlet-Info-URL
	Yes
	A pointer to a URL containing a detailed description of the MIDlet suite.

	MIDlet-Name
	Yes
	The name of the MIDlet suite.

	MIDlet-Vendor
	Yes
	The name of the organization (or vendor) providing the suite.

	MIDlet-Version
	Yes
	The version number of the MIDlet suite presented in the format XX.YY.ZZ, where XX is the major, YY is the minor, and ZZ is the micro. If the micro is omitted, the default is zero. Therefore, the micro is optional. This information is used by the application management software for install and upgrade uses.

Example 3-1 shows a sample manifest for a MIDlet suite (in this case, only two MIDlets) for a shopping MIDlet.

Example 3-1. A sample manifest

MIDlet-Name: ShopOnLine

MIDlet-Version: 1.0

MIDlet-Vendor: SELKOM

MIDlet-Description: a shopping MIDlet

MIDlet-Info-URL: http://www.selkom.com/shop

MIDlet-Data-Size: 500

MIDlet-1: BuyMIDlet, /icons/buy.png, com.selkom.BuyMIDlet

MIDlet-2: PayMIDlet, /icons/sell.png, com.selkom.SellMIDlet

MicroEdition-Profile: MIDP-1.0

MicroEdition-Configuration: CLDC-1.0

3.2.2 Java Application Descriptor (JAD)

Using a manifest to describe the MIDlets in the suite is a bit problematic. In Chapter 1, we mentioned that before downloading a MIDlet or a MIDlet suite to a device, the Java Application Manager should check to make sure there is enough space for it. Using a manifest, however, means that the Java Application Manager should download the JAR file in order to read the manifest. Imagine downloading a MIDlet suite only to discover it cannot be installed on your device because it requires the next generation MIDP. To avoid these problems, the MIDP specification also defines the Java Application Descriptor (JAD).

A JAD file is a text file that is similar to a manifest. Unlike a manifest, however, it is not packaged in the JAR file. Similar to a manifest, it consists of a series of attributes used to describe a MIDlet suite. The possible attributes are shown in Table 3-4.

	Table 3-4. JAD attributes

	Attribute name
	Required
	Description

	MIDlet-Name
	Yes
	The name of the MIDlet suite.

	MIDlet-Version
	Yes
	The version number of the MIDlet suite. The format is XX.YY or XX.YY.ZZ, where XX is the major, YY is the minor, and ZZ is the micro that is optional. If the micro is omitted, the default is zero.

	MIDlet-Vendor
	Yes
	The vendor of the MIDlet suite.

	MIDlet-Jar-URL
	Yes
	The URL from which to download the MIDlet suite.

	MIDlet-Jar-Size
	Yes
	The size of the MIDlet suite in bytes.

	MIDlet-Description
	No
	A description of the MIDlet suite.

	MIDlet-Icon
	No
	The pathname of a PNG file for the suite. The icon is used to identify the suite.

	MIDlet-Info-URL
	No
	A URL that describes the MIDlet suite in greater detail.

	MIDlet-Data-Size
	No
	The minimum number of bytes of persistent storage the MIDlet suite requires. If not specified, the default is zero.

As you can see from Table 3-2 and Table 3-3, there are some common attributes between the manifest and the JAD file. The mandatory attributes that must be duplicated in both the manifest and the JAD file are: MIDlet-Name, MIDlet-Version, and MIDlet-Vendor.

Example 3-2 shows a JAD file for the same hypothetical MIDlet suite.

Example 3-2. A sample JAD file

MIDlet-Name: ShopOnLine

MIDlet-Version: 1.0

MIDlet-Vendor: SELKOM

MIDlet-Jar-URL:
http://www.selkom.com/shop/mid.jar
MIDlet-Jar-Size: 3544

MIDlet-Data-Size: 500

And that's the difference between a JAR manifest file and a JAD file in a MIDlet suite.

3.2.3 Programming Guidelines

Before we start programming with MIDlets, let's briefly discuss some guidelines that are useful when developing applications for mobile information devices such as cell phones and PDAs that you likely haven't considered before.

3.2.3.1 Performance

When programming for mobile devices with a small memory footprint, it is crucial to make your applications run faster. The less time your application takes to run, the happier your customers will be. For the J2SE programmer, here are some ways to help you achieve the best performance:

· Use local variables instead of fields. Accessing local variables is quicker than accessing class members.

· Minimize method calls.Remember that the Java virtual machine uses the stack to load and store a stack frame for every method it executes. For example, instead of doing something like:

· for (int i=0; i<obj.getLength(); i++) {

· // do something with array elements

}

where the length of the array is evaluated every time through the loop, it is much more efficient to do this:

int len = obj.getLength();

for (int i=0; i<len; i++) {

 // do something with array elements

}

· Avoid string concatenation. This may cause a lot of object creation and subsequent garbage collection, and therefore decreases performance and increases the application's memory usage. It's often more efficient to use StringBuffer instead.

· Minimize object creation. Object creation leads to object destruction and reduces performance. Instead, design objects that can be recycled. Instead of creating return objects inside of methods, consider passing in a reference to the return object and modifying its values.

· Avoid synchronization.If an operation takes longer than a fraction of a second to run, consider placing it in a separate thread.

Part II: Programming with the CLDCand the MIDP

Part II starts by elaborating on some of the concepts introduced in Chapter 3. Later chapters show how to program with the CLDC/MIDP APIs, including GUI, event handling, networking, and databases. Chapter 9 shows how to convert MIDlets into executable Palm applications for handheld devices running Palm OS v3.5 or higher.

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 4. Working with MIDlets

MIDlets are very simple to implement. All MIDlets must extend the javax.microedition.midlet.MIDlet abstract class and implement certain methods in that class. The MIDlet abstract class provides the basic functionality required in all MIDlets. A MIDlet runs in a controlled environment and therefore must implement certain methods that allow the application manager (which installs and runs the MIDlet) to control the behavior of the MIDlet. These methods are known as life cycle methods, since they reflect various states in which a MIDlet can be.

You'll recall from the previous chapter that a MIDlet can be in one of three states: paused, active, or destroyed. The state chart in Figure 4-1 shows the possible state transitions of a MIDlet, this time with the addition of the methods that the Java Manager will call inside the MIDlet code during those transitions.

Figure 4-1. MIDlet state transitions

[image: image16.png]!

~ Paused.
|
pauserpp() startapp()

= Adive

destroyapp() destroyhpp()

L~ Deswoped

Here, the javax.microedition.midlet.MIDlet abstract class defines three life cycle methods that are called during the state transitions: pauseApp(), startApp(), and destroyApp(). These three methods were present in the example we developed in Chapter 1. The responsibilities for these three life cycle methods are as follows.

public void startApp()
This method indicates that the MIDlet is moving from a paused state to an active state. Here, the MIDlet will typically initialize any objects that are required while the MIDlet is active, and set the current display.

public void pauseApp()
This method is called when the MIDlet is moving from an active state to a paused state. This means that it will pause any threads that are currently active, as well as optionally setting the next display to be shown when the MIDlet is re-activated. Data can be persisted, if necessary, and retrieved later when the MIDlet is activated again.

public void destroyApp(boolean unconditional)
This method indicates that the MIDlet is moving to the destroyed state. It should free or close all resources that have been acquired during the life of the MIDlet. In addition, the method should persist any data that it wishes to save for future use.

It is important to note that startApp() can be called more than once. In addition to being called when the MIDlet is first activated to move the MIDlet from the paused state to the active state, it can also be called if the MIDlet has been paused during execution and wishes to again return to the active state.

4.1 The Application Manager

The application manager, sometimes called the Application Management System (AMS) or MIDlet management software, is software that is preinstalled on a MIDP device and that functions as an operating environment. For example, on a Motorola i85s, the Java Apps menu item will start the application manager, which immediately shows the Java logo and the words "Mobile Information Device Profile Compatible" and then displays a menu of the MIDlet suites that have been installed on the phone.

However, the application manager must do more than simply show a menu of the MIDlet suites that are installed. According to the MIDP specification, the application manager must be able to:

· Retrieve a MIDlet suite from somewhere, possibly through a serial connection, infrared connection, or across a wireless connection to the Internet

· Install a MIDlet suite on the MIDP device

· Perform version management on MIDlet suites that are installed

· Launch a MIDlet from a MIDlet suite and provide an operating environment for the KVM, as well as any system, MIDP, and CLDC classes

· Delete a previously installed MIDlet suite

As a MIDlet programmer, you typically won't need to be concerned with the internals of the application manager running on the device—it's unique to each device. However, some insight into its responsibilities is important when designing MIDP applications. In this case, the MIDlet life cycle methods can be called by the application manager to control the MIDlet state:

· When the user launches a MIDlet, the application manager creates a new instance of the MIDlet class by calling its zero-argument constructor. This typically performs the one-time initialization. Once this is done, the MIDlet will be placed in a paused state. However, if any exception occurs during the instantiation of the MIDlet class, the application manager will move the class to the destroyed state.

· After the MIDlet has been placed in the paused state, the application manager calls startApp() to transition it to the active state.

· The application manager can then call pauseApp() to move it from the active state to the paused state, either via a request from the program itself or from the operating environment.

· destroyApp() can be called by the application manager to transition the MIDlet to the destroyed state. The destroyApp() method takes a boolean argument to indicate if the MIDlet should clean up or not.

Example 4-1 shows a MIDlet skeleton class that implements the life cycle methods of the javax.microedition.midlet.MIDlet class.

Example 4-1. MIDlet skeleton

import javax.microedition.midlet.*;

public class MyMIDlet extends MIDlet {

 public MyMIDlet() {

 // constructor

 }

 public void startApp() {

 // entering active state

 }

 public void pauseApp() {

 // entering paused state

 }

 public void destroyApp(boolean unconditional) {

 // entering destroyed state

 }

}

Believe it or not, this class is all you need to create a MIDlet. The only thing we should reiterate is our earlier warning that startApp() can be called more than once. Hence, if you have any one-time initialization that you wish to perform for your MIDlet, be sure that it is placed in the constructor of the MIDlet object and not in the startApp() method.

Earlier, we mentioned that a MIDlet could change its own state if needed. The javax.microedition.midlet.MIDlet abstract class provides three methods that can be called by a MIDlet to control its own state transitions:

public void notifyPause()
A MIDlet may call this method to pause itself. It can be called while in the active state, to inform the Java Application Manager that the MIDlet has entered the paused state.

public void resumeRequest()
A MIDlet may call this method to express interest in entering the active state. The application manager also calls this method to determine which MIDlet to activate, then it calls its startApp() method.

public void notifyDestroyed()
A MIDlet calls this method to destroy itself. It can be called while in the active state or the paused state, to indicate to the application manager that it has entered the destroyed state. Note that the application manager will not call destroyApp(). Consequently, the MIDlet manages the release of its resources.

4.2 Creating MIDlets

Now that you're familiar with MIDlet states and the application manager, let's create another MIDlet. As you've probably guessed by now, this involves the following five steps:

1. Write the MIDlet.

2. Compile the MIDlet's source code.

3. Preverify the MIDlet's class file.

4. Package the application in a JAR file.

5. Create a JAD file.

Let's review each of these steps. First, we'll look at the command-line technique that was shown in Chapter 1. Then, we'll introduce the KToolbar application, which comes with the J2ME Wireless Toolkit and which can make our lives much easier.

4.2.1 Write the MIDlet

The first step in the development life cycle is to write the MIDlet. Example 4-2 shows a simple MIDlet, PaymentMIDlet. This MIDlet creates a List object of type EXCLUSIVE (that is, only one option can be selected at a time), and adds three methods of payments to it. It displays a list of options for the user to select a method of payment.

Example 4-2. Sample MIDlet

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class PaymentMIDlet extends MIDlet {

 // The display for this MIDlet

 private Display display;

 // List to display payment methods

 List method = null;

 public PaymentMIDlet() {

 method = new List("Method of Payment",

 Choice.EXCLUSIVE);

 }

 public void startApp() {

 display = Display.getDisplay(this);

 method.append("Visa", null);

 method.append("MasterCard", null);

 method.append("Amex", null);

 display.setCurrent(method);

 }

 /**

 * Pause is a no-op since there are no background

 * activities or record stores that need to be closed.

 */

 public void pauseApp() {

 }

 /**

 * Destroy must cleanup everything not handled by the

 * garbage collector. In this case there is nothing to

 * cleanup.

 */

 public void destroyApp(boolean unconditional) {

 }

}

4.2.2 Compile the Source Code

To compile the source code with the command-line tools of the Java Wireless Toolkit, use the javac command. Remember that you should use the -bootclasspath option to make sure the source code is compiled against the correct CLDC and MIDP classes.

C:\midlets> javac -bootclasspath C:\j2mewtk\lib\midpapi.zip PaymentMIDlet.java

This command produces the PaymentMidlet.class file in the current directory. This is a slightly simplified version of the command we used in Chapter 1, which puts the resulting class file in a temporary directory.

4.2.3 Preverify the Class File

The next step is to preverify the class file using the preverify command:

C:j2mewtk\bin> preverify -classpath C:\midlets;C:\j2mewtk\lib\midpapi.zip

 PaymentMIDlet

Again, a slightly different approach. This command creates an output subdirectory in the current directory and writes a new file PaymentMIDlet.class. This is the preverified class that the KVM can run with its modified class verifier.

4.2.4 Package the Application in a JAR File

In order to enable dynamic downloading of MIDP applications, the application must be packaged in a JAR file. To create a JAR file, use the jar command:

C:\midlets> jar cvf payment.jar PaymentMidlet.class

4.2.5 Create a JAD File

A JAD file is necessary if you want to run a CLDC-compliant application. Example 4-3 shows a sample JAD file for the payment MIDlet.

Example 4-3. A sample JAD file

MIDlet-1: payment,,PaymentMIDlet

MIDlet-Name: Payment

MIDlet-Version: 1.0

MIDlet-Vendor: ORA

MIDlet-Jar-URL: payment.jar

MIDlet-Jar-Size: 961

Once you have the JAD file, you can test your application using the MIDP emulator using the emulator command of the Java Wireless Toolkit, as shown here:

C:\j2mewtk\bin> emulator -Xdescriptor:C;\midlets\payment.jad

If all goes well, activate the MIDlet and you will see output similar to Figure 4-2.

Figure 4-2. Running the payment MIDlet

[image: image17.png]et o Pt
Qus

&
sy

If your MIDP application consists of multiple MIDlets, they can all be in one JAR file as a MIDlet suite. However, you would need to specify them in the JAD file using the MIDlet-n entry, where n is the number of the MIDlet. Consider the JAD file in Example 4-4, with three hypothetical MIDlets.

Example 4-4. Three hypothetical MIDlets

MIDlet-1: Buy, , BuyMidlet

MIDlet-2: Sell, , SellMidlet

MIDlet-3: Trade, , TradeMidlet

MIDlet-Name: Trading

MIDlet-Version: 1.0

MIDlet-Vendor: ORA

MIDlet-Jar-URL: trade.jar

MIDlet-Jar-Size: 2961

If you run this JAD file, you would see something similar to Figure 4-3.

Figure 4-3. MIDlet suite

[image: image18.png]A
e one

A MIDP application may consist of multiple MIDlets, as shown in Figure 4-3. Similarly, a desktop application consists of menus and options, as shown in Figure 4-4.

Figure 4-4. Desktop application

[image: image19.png]Fle Edt Vew Favoies Took Heb
New ,

pen. oo | psy

4.2.6 Simplifying the Development

You have now seen how to compile, preverify, create JAR and JAD files, and run MIDlets from the command line. This is fine if you want to understand what's happening behind the scenes. However, there is an alternative. An integrated development environment, such as the J2ME Wireless Toolkit, can be used to simplify the development and deployment of MIDlets. The J2ME Wireless Toolkit comes with an application called KToolbar. The following steps show how to use the KToolbar to set up a simple MIDlet, develop the application, package it, and run it.

1. In Microsoft Windows, choose Start [image: image20.png]

Programs [image: image21.png]

J2ME Wireless Toolkit [image: image22.png]

KToolbar to start the development environment. Figure 4-5 shows the resulting KToolbar screen.

Figure 4-5. KToolbar screen

[image: image23.png]-IoIx]

o] Sowramar | |] [owels

2. Click on the New Project button to create a new project called payment, and call the MIDlet class PaymentMIDlet, as shown in Figure 4-6.

Figure 4-6. New project

[image: image24.png]|- T P |
Proctame pament
L e

create project | cance!

3. Once you click on Create Project in Figure 4-6, you will get a setting project window, as shown in Figure 4-7. This window allows you to modify the MIDlet attributes. All the required attributes are shown in Figure 4-7.

Figure 4-7. Required attributes

[image: image25.png](55 5 cttings for project “payment]

DTet a6 o0
MIDIetJar-URL paymertar
MDlet Name. payment
MIDlstvendor SunMicrosystoms.
MDleLyersion o
WicroEdtor.Corigural CLOC-10
McroEdton Frofla MDP1.0

4. If you click on the Optional tab, you will get a window with all the optional attributes, which are shown in Figure 4-8.

Figure 4-8. Optional attributes

[image: image26.png]Reaured OGTAT] Mot |

o
i
o

v
Eller

5. Once you click OK, you will get the original KToolbar screen with information to indicate where to save your source and resource files. Assuming the Wireless Toolkit is installed in the directory C:\J2MEWTK, then you will be told to save your Java source files in C:\J2MEWTK\apps\payment\src and your resource files (e.g., icons) in C:\J2MEWTK\apps\payment\res.

Now, use your favorite text editor and write PaymentMIDlet, or simply copy the source from Example 4-2. Then, save it in the required location and click on the Build button to compile it. Note that the KToolbar application performs all the steps of compiling the application, preverifying the classes, compressing them into a JAR file, and creating a corresponding JAD file for you. All you have to do is to click the Run button to run it. Then you can test your MIDlet using a default phone, Motorola's i85s, or a Palm OS, as shown in Figure 4-9.

Figure 4-9. Select a testing device (upper right corner of KToolbar)

[image: image27.png][-[01x]

oot | Bsstngs. | Ggu | cmn | oswg | oodcoermmsrarnon <]

paymenc. jaz
payaenc. jad

Choose your favorite testing device to test the MIDlet. For example, Figure 4-10 shows the PaymentMIDlet running in a default gray phone device.

Figure 4-10. PaymentMIDlet on the default phone

[image: image28.png]

Figure 4-11 shows the PaymentMIDlet running on Motorola's i85s device.

Figure 4-11. PaymentMIDlet on the Motorola i85s

[image: image29.png]

Figure 4-12 shows the same application running on a Palm Pilot and Figure 4-13 shows the PaymentMIDlet application running on RIM's BlackBerry. Chapter 9 discusses how to install the Java Application Manager on a real Palm OS device and how to convert existing MIDlets into PRC executable files for handheld devices running Palm OS 3.5 or higher.

Figure 4-12. PaymentMIDlet on Palm OS

[image: image30.png]Palm OS” Emulator

Figure 4-13. PaymentMIDlet running on RIM's BlackBerry

[image: image31.png]Emulation Only

Qi
ot

4.2.7 Deploying MIDlets

As of this writing, deploying MIDlets is still an experimental process. However, the Java application manager that comes with the MIDP reference implementation now provides some clues about how we can deploy MIDlets to various devices. Specifically, MIDlets can be installed in two ways:

· Using a data cable or other dedicated physical connection from a local host computer

· Using a network to which the device is intermittently connected

The first method works well with PDAs, which are often used with a host computer, with which the PDAs frequently synchronize their data. For example, the MIDP for Palm implementation, which is discussed in Chapter 9, is a good example of this; its application manager allows MIDlet suites to be installed from a host PC during the synchronization process.

The second method is more popular when installing MIDlets on cell phones and other wireless devices. With these devices, the most likely delivery transport is the wireless network itself. The process of deploying MIDlet suites over a network is referred to as over-the-air (OTA) provisioning. OTA provisioning is not yet part of the MIDP specification, but it is likely to become the dominant mechanism for distributing MIDlets and will probably be included in the formal specification soon.

4.2.7.1 Deploying OTA

As of this writing, OTA provisioning is just starting to be used with J2ME devices such as the Motorola i85s/i50x series of cell phones. OTA provisioning allows MIDlet providers to install their MIDlet suites via web servers that provide hypertext links. This allows you to download MIDlet suites to a cell phone via a WAP or Internet microbrowser. Here is a brief description of how this process works.

First, to deploy a MIDlet from a web server, you need to reconfigure your web server by adding a new MIME type:

text/vnd.sun.j2me.app-descriptor jad

How to add the MIME type depends on what server you are running. For example, if you're running Apache Tomcat, you would add a new MIME type by adding a new entry in the web.xml server configuration file, as follows:

<mime-mapping>

 <extension>jad</extension>

 <mime-type>text/vnd.sun.j2me.app-descriptor</mime-type>

</mime-mapping>

You would then use the following type of procedure to install a MIDlet suite from a web page:

1. Click on a link, which will probably request a file with a JAD extension, such as the following:

Click here to install the MIDlet suite

2. The server will then send the MyApp.jad file to the phone with the MIME type set to text/vnd.sun.j2me.app-descriptor, as described earlier. Recall that the JAD file must contain the MIDlet-Jar-URL and MIDlet-Jar-Size properties, which tell the device where to download the MIDlet suite, as well as the suite's size in bytes.

3. The Java application manager on the phone will then ask if you want to install the MIDlet into the phone, assuming that the phone has the resources to run the MIDlet (i.e., that there's enough space on the device to hold the MIDlet suite).

4. If you answer yes, the entire JAR file will be downloaded from the server, using the properties specified in the JAD file.

Once the MIDlet is downloaded, it will be installed the first time you try to use it. A downloaded MIDlet stays on the device until you remove it (unlike Java applets).

4.2.7.2 Deploying to the Motorola i50x/i85s

You can also download J2ME applications to a Motorola/Nextel i50x or i85s device from your desktop through a data cable. This cable does not come with the phone itself, but can be ordered online from Nextel. The iDEN update software can then be downloaded from the iDEN development site (http://www.motorola.com/idendev).

In addition, you can also purchase a data cable that comes with a CD-ROM containing the iDEN update software from Nextel from this site. Obtaining the software may involve authorization from your carrier, which can take between one and five days. Once you are granted authorization, however, you can install applications on up to five individual phones. The following paragraphs describe how to use the Motorola iDEN update software to download a J2ME MIDlet to your phone.

After you have obtained the update software, start it up and choose the J2ME Developers tab on the far left. This will result in a screen similar to that in Figure 4-14. From here, you can choose a JAD file to download the application into your phone through the data cable. Note that the JAD file and the JAR file must reside in the same directory and must have the same filename (excluding the extension).

Figure 4-14. Motorola iDEN update software

[image: image32.png]Plaase salectthe application you would Iike to purchase.

For the most part, downloading an application to the phone is easy. However, the Motorola i85s and i50x phones will perform a number of checks to ensure the integrity of the application while installing it. You should observe the following rules to ensure that the phone will install the application.

The JAD file downloaded to the i85s or i50x must contain at least the following entries, which are case-sensitive:

MIDlet-Name:

MIDlet-Version:

MIDlet-Vendor:

MIDlet-Jar-Size:

MIDlet-Jar-URL:

It can also contain the following optional entries:

MIDlet-Description:

MIDlet-Info-URL:

MIDlet-Data-Size:

In addition, the JAD file can contain any other MIDlet-specific information that does not begin with the letters "MIDlet-".

Remember from Chapter 3 that the JAR file must contain a manifest with at least the following information, which must be identical to the data in the JAD file:

MIDlet-Name:

MIDlet-Version:

MIDlet-Vendor:

If you do not include this information in the manifest, the phone will respond with a "Descriptor Error" when it is attempting to install the application. If this happens, simply press the Menu button while the MIDlet is selected and remove it from the system.

Here are some other things to note when downloading to the Motorola i85s or i50x:

· The JAD file is case-sensitive.

· The maximum file length for both the JAD and the JAR file is 16 characters, which includes the four characters for the extension (e.g., .JAD or .JAR).

· The byte size of the JAR file must be accurately stated in the JAD file.

· Each of the attributes in the JAD and JAR file manifests must have a value associated with it. You cannot leave an attribute value blank.

· Classes which are instantiated using the Class.forName() method must be identified in the JAD file using the attribute: iDEN-Install-Class-n:, where n is a positive integer. The class name is listed afterward without the .class extension.

Example 4-5 shows the manifest information that we would be using if we wanted to download the HelloMidlet application from Chapter 1 to the Motorola i85s. Remember that the manifest must contain the three specified attributes (MIDlet-Name, MIDlet-Version, and MIDlet-Vendor) and that they must be identical to the values in the JAD file. If they differ, the phone will not install the MIDlet. We have also included the MIDlet class identification information and the profile and configuration version numbers, which we recommend that you include in your MIDlet manifests as well.

Example 4-5. Manifest.mf

MIDlet-Name: HelloMidlet

MIDlet-Vendor: ORA

MIDlet-Version: 1.0.0

MIDlet-1: HelloMidlet,,HelloMidlet

MicroEdition-Profile: MIDP-1.0

MicroEdition-Configuration: CLDC-1.0

At this point, let's create a compressed JAR file of the classes that make up the MIDlet. With the manifest and the preverified class in the same directory, enter the following command:

>jar cvfm HelloMidlet.jar manifest.mf HelloMidlet.class

Once that is completed, you'll need to create the JAD file. Example 4-6 shows the JAD file for our HelloMidlet application. Note that we had to change the value of the MIDlet-Jar-Size attribute to match the size, in bytes, of the JAR file that we just created. In this case, it turned out to be 954 bytes with the additional manifest information.

Example 4-6. HelloMidlet.jad

MIDlet-1: HelloMidlet,,HelloMidlet

MIDlet-Jar-Size: 954

MIDlet-Jar-URL: http://www.oreilly.com/

MIDlet-Name: HelloMidlet

MIDlet-Vendor: ORA

MIDlet-Version: 1.0.0

MIDlet-Description: A sample application

Now we're ready to go. Again, be sure that the JAD file and the JAR file have the same name and reside in the same directory. Then use the iDEN software tools to download the application to your phone. It should only take a few seconds once you've chosen the target JAD file. After the download has completed, start the Java Application Manager on the phone (Java Apps under the Main Menu) and select the HelloMidlet application. Press the soft button to install it. You are now installing your first Java MIDlet on a real device. If everything goes okay, you can run your program after it completes the installation and verification steps.

Chapter 5. MIDP GUI Programming

User interface requirements for handheld devices are different from those for desktop computers. For example, the display size of handheld devices is smaller, and input devices do not always include pointing tools such as a mouse or pen input. For these reasons, you cannot follow the same user-interface programming guidelines for applications running on handheld devices that you can on desktop computers.

The CLDC itself does not define any GUI functionality. Instead, the official GUI classes for the J2ME are included in profiles such as the MIDP and are defined by the Java Community Process (JCP). You'll note that the GUI classes included in the MIDP are not based on the Abstract Window Toolkit (AWT). That seems like a major issue, which brings us to the following question.

5.1 Why Not Reuse the AWT?

After a great deal of consideration, the MIDP Expert Group decided not to subset the existing AWT and Project Swing classes for the following reasons:

· AWT is designed for desktop computers and optimized for these machines.

· AWT assumes certain user interaction models. The component set of the AWT is designed to work with a pointing device such as a mouse; however, many handheld devices, such as cell phones, have only a keypad for user input.

· AWT has a rich feature set, and includes support for functionality that is not found or is impractical to implement on handheld devices. For example, the AWT has extensive support for window management, such as resizing overlapping windows. However, the limited display size of handheld devices makes resizing a window impractical. Therefore, the window and layout managers within the AWT are not required for handheld devices.

· When a user interacts with an AWT-based application, event objects are created dynamically. These objects exist only until each associated event is processed by the application or system, at which time the object becomes eligible for garbage collection. The limited CPU and memory of handheld devices, however, cannot handle the burden.

5.2 The MIDP GUI APIs

Because of the issues outlined earlier, the MIDP contains its own abbreviated GUI, which is much different from AWT. The MIDP GUI consists of both high-level and low-level APIs, each with their own set of events. This chapter discusses and shows examples of using objects from both the high-level and low-level APIs. Handling events from APIs, however, is deferred to the next chapter.

The high-level API is designed for applications where portability between mobile information devices is important. To achieve portability, the API employs a high-level abstraction and gives you little control over its look and feel. For example, you cannot define the visual appearance (shape, color, or font) of the high-level components. Most interactions with the components are encapsulated by the implementation; the application will not be aware of them. Consequently, the underlying implementation does the necessary adaptation to the device's hardware and native user interface style. Classes that implement the high-level API all inherit the javax.microedition.lcdui.Screen class.

The low-level API provides little abstraction. It is designed for applications that need precise placement and control of graphic elements, as well as access to low-level input events. This API gives the application full control over what is being drawn on the display. The javax.microedition.lcdui.Canvas and javax.microedition.lcdui.Graphics classes implement the low-level API. However, we should point out that MIDlets that access the low-level API are not guaranteed to be portable, because this API provides mechanisms to access details that are specific to a particular device.

5.2.1 The MIDP GUI Model

Here's how the MIDP GUI model works, in a nutshell. In order to show something on a MIDP device, you'll need to obtain the device's display, which is represented by the javax.microedition.lcdui.Display class. The Display class is the one and only display manager that is instantiated for each active MIDlet and provides methods to retrieve information about the device's display capabilities.

Obtaining the device's display is easy. However, this object by itself isn't very interesting. Instead, the more interesting abstraction is the screen, which encapsulates and organizes graphics objects and coordinates user input through the device. Screens are represented by the javax.microedition.lcdui.Screen object and are shown by the Display object by calling its setCurrent() method. There can be several screens in an application, but only one screen at a time can be visible (or current) in a display, and the user can traverse only through the items on that screen. Figure 5-1 shows the one-to-many relationship between the display and its screens.

Figure 5-1. Relationship between display and screens

[image: image33.png][chose ane.
et ofparmort

enarot
Botiioe |
Voiee

There are three types of screens in the MIDP GUI:

· Screens that entirely encapsulate a complex user interface component, such as a List or TextBox component (the List component is shown in Figure 5-8 and the TextBox component is shown in Figure 5-5). The structure of these screens is predefined, and the application cannot add other components to these screens.

· Generic screens that use a Form component. The application can add text, images, and a simple set of related UI components to the form, which acts as a container.

· Screens used within the context of the low-level API, such as a subclass of the Canvas or Graphics class.

5.2.2 The lcdui Package

All MIDP GUI classes are contained in the javax.microedition.lcdui package. This package contains three interfaces and twenty-one classes, as shown in Table 5-1 and Table 5-2.

	Table 5-1. lcdui interfaces

	Interface
	Description

	Choice
	Defines an API for a user interface component that implements a selection from a predefined number of choices

	CommandListener
	Used by applications that need to receive high-level events from implementations

	ItemStateListener
	Used by applications that need to receive events that indicate changes in the internal state of the interactive items

	Table 5-2. lcdui classes

	Class
	Description

	Alert
	A screen that shows data to the user and waits for a certain period of time before proceeding to the next screen.

	AlertType
	A utility class that indicates the nature of the alert.

	Canvas
	The base class for writing applications that need to handle low-level events and to issue graphics calls for drawing to the display.

	ChoiceGroup
	A group of selectable elements intended to be placed within a Form.

	Command
	A construct that encapsulates the semantic information of an action.

	DateField
	An editable component for presenting calendar data and time information that may be placed into a Form.

	Display
	A utility that represents the manager of the display and input devices of the system.

	Displayable
	An object that has the capability of being placed on the display.

	Font
	A utility that represents font and font metrics.

	Form
	A screen that contains an arbitrary mixture of items (images, text, text fields, or choice groups, for instance).

	Gauge
	A utility that implements a bar graph display of a value intended for use in a form.

	Graphics
	A utility that provides a simple two-dimensional geometric rendering capability.

	Image
	A utility that holds graphical image data.

	ImageItem
	A utility that provides layout control when Image objects are added to a form or alert.

	Item
	A superclass for all components that can be added to a Form or Alert.

	List
	A screen containing a list of choices.

	Screen
	The superclass of all high-level user interface classes.

	StringItem
	An item that can contain a String.

	TextBox
	A screen that allows the user to enter and edit text.

	TextField
	An editable text component that can be placed into a Form.

	Ticker
	A ticker-type piece of text that runs continuously across the display. It can be attached to all screen types except Canvas.

The class diagram in Figure 5-2 shows the major classes and the relationships between them.

Figure 5-2. Class diagram of the major classes in the lcdui package

[image: image34.png]Sy T o
ey
e R —]
et]
list Choi <cimertos>> |- Imagolion
fom L ——
— Tt
T [T [——

5.4 Creating Low-Level GUI Components

In the high-level API, you have no control of what is displayed on the screen and very little freedom to "play" with the components programmatically. The implementation is responsible for selecting the best approach for the device. Some applications, however, such as games, may need more control over what is drawn on the screen. The MIDP javax.microedition.lcdui package also provides a low-level API for handling such cases.

In order to directly draw lines, text, and shapes on the screen, you must use the Canvas class. The Canvas class provides a blank screen on which a MIDlet can draw. For example, let's draw the string "HelloWorld" on the screen. There's a simple way to do this: subclass the Canvas class, which is an abstract class that extends Displayable, and override the paint() method. The resulting class, MyCanvas, is shown in Example 5-1.

The implementation of the paint() method uses the drawing capabilities of the javax.microedition.lcdui.Graphics class. In the paint() method, the drawing color is set to red, then a rectangle is drawn in the current color. The methods getWidth() and getHeight() return the width and height of the Canvas, respectively. The next call to setColor() sets the drawing color to white; then the string "Hello World!" is drawn in the top left corner of the screen.

Example 5-1. Subclassing Canvas

import javax.microedition.lcdui.*;

public class MyCanvas extends Canvas {

 public void paint(Graphics g) {

 g.setColor(255, 0, 0);

 g.fillRect(0, 0, getWidth(), getHeight());

 g.setColor(255, 255, 255);

 g.drawString("Hello World!", 0, 0, g.TOP | g.LEFT);

 }

}

Now, in order to view the MyCanvas, it must be instantiated and displayed. Since Canvas is a subclass of Displayable, it can be displayed the same way any other screen using the setCurrent() method. Example 5-2 shows the resulting MIDlet.

Example 5-2. Instantiating and displaying MyCanvas

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class MyMidlet extends MIDlet {

 public MyMidlet() { // constructor

 }

 public void startApp() {

 Canvas canvas = new MyCanvas();

 Display display = Display.getDisplay(this);

 display.setCurrent(canvas);

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

}

If you run this in the Wireless Toolkit emulator, you will see something similar to Figure 5-22. Note from Example 5-1 that the colors are set to red and white, but since a grayscale display is being used, the colors are mapped to appropriate shades of black and white. Try switching displays to see which devices give a better feel for the colors.

Figure 5-22. Drawing "Hello World!" on a Canvas

[image: image35.png]

5.4.1 Drawing Graphics

The (0,0) coordinate represents the upper left corner of the display. The numeric value of the x-coordinate increases from left to right, and the numeric value of the y-coordinate increases from top to bottom. Applications should always check the dimensions of the drawing area by using the following methods of the Canvas class:

public int getHeight();

public int getWidth();

These two methods return the height and width of the displayable area in pixels, respectively.

The drawing model used is called pixel replacement. It works by replacing the destination pixel value with the current pixel value specified in the graphics objects being used for rendering. A 24-bit color model is provided with 8 bits each for Red, Green, and Blue (RGB). However, since not all devices support color, colors requested by applications will be mapped into colors available on the devices. A well-written application, however, may check if a device supports color. This can be done using the isColor() and numColors() methods of the Display class, which we covered earlier in the chapter.

The Graphics class provides the setColor() and getColor() methods for setting and getting the color. Unlike the AWT/Swing, however, there is no setBackground() and setForeground(), so you need to explicitly call fillRect(), as shown in Example 5-1. Most of the other methods in the Graphics class are self-explanatory and similar to methods in the AWT version of this class. However, let's go over a few of them here to see how they work in the J2ME environment.

5.4.2 Double Buffering

The double buffering technique is often used to perform smooth effect animation. In this technique, you do not draw to the display, but instead to a copy of the display (an off-screen buffer) that is maintained in memory. When you are done drawing to the buffer, you then copy the contents of the buffer to the display. The rationale here is that copying the contents of memory to the display is faster than drawing by using primitives.

To implement double buffering, first create a mutable image with the size of the screen:

int width = getWidth();

int height = getHeight();

Image buffer = Image.createImage(width, height);

Next, obtain a graphics context for the buffer:

Graphics gc = buffer.getGraphics();

Now, you can draw to the buffer:

// animate

// ..

gc.drawRect(20, 20, 25, 30);

When you need to copy the buffer to the screen, you can override the paint() method to draw the buffer to the device display:

public void paint(Graphics g) {

 g.drawImage(buffer, 0, 0, 0);

}

	[image: image36.png]

	Note that some MIDP implementations are already double-buffered, and therefore this work may not be necessary. To check if the graphics are double-buffered by an implementation, use the Canvas. isDoubleBuffered() method.

	

5.4.3 Threading Issues

The MIDP GUI APIs are thread-safe. In other words, the methods can be called at any time from any thread. The only exception is the serviceRepaints() method of the Canvas class, which immediately calls the paint() method to force immediate repainting of the display. This means that if paint() tries to synchronize on any object that is already locked by the application when serviceRepaints() is called, the application will deadlock. To avoid deadlocks, do not lock an object that will be used by the paint() method if serviceRepaints() is involved.

In addition, you can use the callSerially() method of the Display class to execute code after all pending repaints are served, as shown in the following segment of code:

class TestCanvas extends Canvas implements Runnable {

 void doSomething() {

 // code fragment 1

 callSerially(this);

 }

 public void run() {

 // code fragment 2

 }

}

Here, the object's run() method will be called after the initial call.

5.4.4 Fonts

Fonts cannot be created by applications. Instead, an application requests a font based on attributes (i.e., size, face, style) and the underlying implementation will attempt to return a font that closely resembles the requested font. The Font class represents various fonts and metrics. There are three font attributes defined in the Font class, and each may have different values, as follows:

Face

MONOSPACE, PROPORTIONAL, SYSTEM

Size

SMALL, MEDIUM, LARGE

Style

BOLD, ITALIC, PLAIN, UNDERLINED

For example, to specify a medium size font, use Font.SIZE_MEDIUM, and to specify an italic style, use Font.STYLE_ITALIC, and so on. Values for the style attributes may be combined using the OR (|) operator; values for the other attributes may not be combined. For example, the value of this style attribute specifies a plain, underlined font:

STYLE_PLAIN | STYLE_UNDERLINED

However, the following is illegal:

SIZE_SMALL | SIZE_MEDIUM

This is also illegal:

FACE_SYSTEM | FACE_MONOSPACE

Each font in the system is actually implemented individually, so in order to obtain an object representing a font, use the getFont() method. This method takes three arguments for the font face, size, and style, respectively. For example, the following snippet of code obtains a Font object with the specified face, style, and size attributes:

Font font = Font.getFont(FACE_SYSTEM, STYLE_PLAIN, SIZE_MEDIUM);

If a matching font does not exist, the implementation will attempt to provide the closest match, which is always a valid Font object.

Once a font is obtained, you can use methods from the Font class to retrieve information about that font. For example, you can use the methods getFace(), getSize(), and getStyle() to retrieve information about the face, size, and style of the font, respectively.

Let's look at an example. The code in Example 5-3 subclasses the Canvas class. In this example, the drawing color is set to white, a rectangle is drawn in the current color, then the drawing color is set to black. The rest of the code draws the system fonts on the device screen, as shown in Figure 5-23.

Figure 5-23. Drawing system fonts on the device screen

[image: image37.png]

Example 5-3. Using fonts

import javax.microedition.lcdui.*;

public class FontCanvas extends Canvas {

 public void paint(Graphics g) {

 g.setColor(0xffffff);

 g.fillRect(0, 0, getWidth(), getHeight());

 g.setColor(0x000000);

 g.setFont(Font.getFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN,

 Font.SIZE_LARGE));

 g.drawString("System Font", 0, 0, g.LEFT | g.TOP);

 g.setFont(Font.getFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN,

 Font.SIZE_MEDIUM));

 g.drawString("Medium Size", 0, 15, g.LEFT | g.TOP);

 g.setFont(Font.getFont(Font.FACE_SYSTEM, Font.STYLE_BOLD,

 Font.SIZE_MEDIUM));

 g.drawString("Bold Style", 0, 30, g.LEFT | g.TOP);

 g.setFont(Font.getFont(Font.FACE_SYSTEM, Font.STYLE_ITALIC,

 Font.SIZE_MEDIUM));

 g.drawString("Italic Style", 0, 45, g.LEFT | g.TOP);

 g.setFont(Font.getFont(Font.FACE_SYSTEM,

 Font.STYLE_UNDERLINED, Font.SIZE_MEDIUM));

 g.drawString("Underlined Style", 0, 60, g.LEFT | g.TOP);

 }

}

Now, we instantiate the FontCanvas class and display it, as shown in Example 5-4.

Example 5-4. Instantiating and displaying the FontCanvas class

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class FontMidlet extends MIDlet {

 public FontMidlet() { // constructor

 }

 public void startApp() {

 Canvas canvas = new FontCanvas();

 Display display = Display.getDisplay(this);

 display.setCurrent(canvas);

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

}

5.4.5 Guidelines for GUI Programming for MIDP Devices

As we close this chapter, keep in mind some important guidelines when designing MIDlets with graphical API functionality:

· Be sure to make the MIDlet user interface simple and easy to use. Remember that your applications will likely be used by novice users who probably haven't used a J2ME-enabled phone and may not be familiar with its interface.

· Use the high-level API as much as possible, so that your MIDlets are portable across different handheld devices.

· If your application requires you to use the low-level API, keep to the platform-independent part of the low-level API. This means that your MIDlets should not assume any other keys than those defined in the Canvas class. We'll discuss this in more detail in the next chapter.

· MIDlets should never assume any specific screen size; instead, they should query the size of the display and adjust accordingly.

· Entering alphanumeric data through a handheld device can be tedious. If possible, provide a list of choices from which the user can select.

Chapter 6. MIDP Events

In AWT and Swing, events are generated when a user interacts with an application. For example, if the user selects Save from the File menu, the application is notified of this action and responds to the generated event. The same model holds true for the MIDP. However, as mentioned in the previous chapter, there are two MIDP user interface APIs: high-level and low-level. Therefore, there are two kinds of events: high-level (such as selecting an item from a list) and low-level (such as pressing a key on the device).

This chapter discusses event handling in the MIDP and shows, through examples, how to handle high-level and low-level MIDP events generated by the components of the previous chapter. We start with an explanation of a simple application of events: navigating between screens.

6.1 Screen Navigation

A MIDlet developer needs to provide ways for the user to navigate through the different screens that make up the MIDlet. Because we can only show one screen at a time, however, we need to tie a mechanism to each screen that indicates to the MIDlet that the user has completed working with the current Displayable screen. We can do this by using the Command class, which is part of the javax.microedition.lcdui package. Let's take a closer look at the Command class now.

6.1.1 Commands

Just like a design pattern with the same name, the Command class encapsulates the semantic information of an action. Note that it only contains information about a command, not the actual functionality that is executed when a command is activated. Here is the constructor of the Command class:

public Command(String label, int commandType, int priority);

This is the only constructor for the Command class. Hence, creating a Command object is extremely simple:

Command infoCommand = new Command("Info", Command.SCREEN, 2);

The Command class constructor takes three parameters, and therefore contains the following three lightweight pieces of information: label, command type, and priority.

· The label is a string used for the visual representation of the command. For example, the label may appear next to a soft button on the device or as an element in a menu.

· The command type element specifies the command's intent. The predefined types are actually static integers in the Command class: BACK, CANCEL, EXIT, HELP, ITEM, OK, SCREEN, and STOP.

· The priority value describes the importance of this command relative to other commands on the screen. A priority value of 1 indicates the most important command; higher priority values indicate commands of lesser importance.

Each component that extends Displayable (such as Screen or Canvas) has the following methods available to it:

public void addCommand(Command c);

public void removeCommand(Command c);

These methods allow you to bind a command to a Displayable object. (That's pretty much all of them; recall Figure 5-2.) When the MIDlet executes, the device assigns a visual representation of the command (typically a soft button or menu item) and chooses its placement based on the command type, placing similar commands based on their priority values. Consider the following example, where a TextBox object is created along with three commands. The commands are added to the TextBox object, and the current screen is then set to be the TextBox object:

Display display = Display.getDisplay(this);

TextBox tb = new TextBox("MIDP", "Welcome to MIDP", 40,

 TextField.ANY);

Command exitCommand = new Command("Exit", Command.SCREEN, 1);

Command infoCommand = new Command("Info", Command.SCREEN, 2);

Command buyCommand = new Command("Buy", Command.SCREEN, 2);

tb.addCommand(exitCommand);

tb.addComment(infoCommand);

tb.addCommand(buyCommand);

display.setCurrent(tb);

Look carefully at what this code displays in Figure 6-1. Here, the application manager maps the Exit command to the screen using the soft button on the lower left, but then creates a Menu command to hold the Info and Buy commands. Clicking the right soft button under Menu takes you to a screen with a two-button menu: Info and Buy. This is because the Info and Buy commands are of lesser priority than the Exit command.

Figure 6-1. Exit, Info, and Buy commands

[image: image38.png]sttt

e 10 10F]

E

The general strategy that the application manager will follow is to assign as many commands with a high priority to as many soft buttons as are available. If there are not enough soft buttons, the implementation will likely group the remaining in a secondary menu that can be selected using a Menu soft button, as shown above. However, the exact rules for how each device handles this type of situation are implementation-dependent.

The Command class provides only the following three methods for retrieving the type, label, and priority values:

public int getCommandType();

public String getLabel();

public int getPriority();

Note that there is no way to reset these object properties once they are set in the constructor.

	[image: image39.png]

	The MIDP UI API lets you set up a screen with no commands, but this is generally not useful because the user cannot move to another screen. It is important to note that the Command class can be used with both the high-level and the low-level APIs. Hence, commands can be placed on Screen objects as well as Canvas objects.

	

As we mentioned before, the command itself only contains information about a command, not the actual action that happens when a command is activated. The action is defined in a CommandListener, which is a callback object that is associated with the screen.

6.1.2 The CommandListener Interface

When a user interacts with a MIDlet, such as by selecting an item in a list or interacting with a Gauge, events are generated. Your application is then notified to handle these events through the use of callbacks. Callbacks are actually invocations of programmer-defined methods performed by the underlying application in response to actions taken by a user at runtime.

Callbacks are used in many programming environments, especially in GUI construction kits. For example, the AWT API makes heavy use of callbacks. When a user interacts with a component, for example, the interface code calls back the computational code to respond to the user's action. In some languages such as C/C++, callbacks are implemented by passing a function pointer to another function. The receiving function uses the function pointer to invoke another function when a particular event occurs. Because the Java programming language does not have pointers, however, callbacks are implemented with interfaces. An interface defines a set of methods, but unlike a class, it does not implement their behavior. Instead, you provide interface method implementations for the class that implements the interface.

There are four kinds of user interface callbacks in the MIDP:

· Abstract commands that are part of the high-level API

· Low-level events that represent single-key presses and releases

· Calls to the paint() method of a Canvas class

· Calls to a Runnable object's run() method, requested by a call to the callSerially() method of the Display class

Note that all user-interface callbacks are serialized by the application manager. In other words, they all occur one after another in a single thread of execution, and never at the same time. User interface callbacks are called as soon as the previous callback returns. In addition, the MIDP user interface API is thread-safe and includes a mechanism for event synchronization. An application can use the callSerially() method of the Display class to execute an operation serially with events.

Both Screen and Canvas objects can have listeners for commands that are sent when user interaction occurs. For an object to be a listener, it must implement the CommandListener interface. You can register a listener by using the setCommandListener() method, which is part of the Displayable class and is inherited by both Screen and Canvas. Note that there can only be one CommandListener object for each Displayable that the MIDlet has created.

public void setCommandListener(CommandListener c);

The CommandListener interface is for MIDlets that need to receive high-level events from the implementation. This interface has one method that a listener must implement, which is the commandAction() method.

public void commandAction(Command c, Displayable d);

The first parameter is a command object that identifies the command (if any) that has been added to Displayable with the addCommand() method and invoked. The second parameter is the Displayable object where the event occurred.

6.1.2.1 Handling simple events

Let's look at a simple example. In Example 6-1, a List component is created and filled with the strings "Item1", "Item2", "Item3", and "Item4". The prepare() method is called whenever an item is selected. The testItem#() methods (where # is a number between 1 and 4) each call the prepare() method and set the name of the menu.

Example 6-1. Handling high-level events

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class EventEx1 extends MIDlet implements CommandListener {

 // display manager

 Display display = null;

 // a menu with items

 List menu = null; // main menu

 // textbox

 TextBox input = null;

 // command

 static final Command backCommand = new Command("Back",

 Command.BACK, 0);

 static final Command mainMenuCommand = new Command("Main",

 Command.SCREEN, 1);

 static final Command exitCommand = new Command("Exit",

 Command.STOP, 2);

 String currentMenu = null;

 // constructor

 public EventEx1() {

 }

 /**

 * Start the MIDlet by creating a list of items and associating

 * the exit command with it.

 */

 public void startApp() throws MIDletStateChangeException {

 display = Display.getDisplay(this);

 menu = new List("Menu Items", Choice.IMPLICIT);

 menu.append("Item1", null);

 menu.append("Item2", null);

 menu.append("Item3", null);

 menu.append("Item4", null);

 menu.addCommand(exitCommand);

 menu.setCommandListener(this);

 mainMenu();

 }

 public void pauseApp() {

 display = null;

 menu = null;

 input = null;

 }

 public void destroyApp(boolean unconditional) {

 notifyDestroyed();

 }

 // main menu

 void mainMenu() {

 display.setCurrent(menu);

 currentMenu = "Main";

 }

 /**

 * a generic method that will be called when any of

 * the items on the list are selected.

 */

 public void prepare() {

 input = new TextBox("Enter some text: ", "", 5,

 TextField.ANY);

 input.addCommand(backCommand);

 input.setCommandListener(this);

 input.setString("");

 display.setCurrent(input);

 }

 /**

 * Test item1.

 */

 public void testItem1() {

 prepare();

 currentMenu = "item1";

 }

 /**

 * Test item2.

 */

 public void testItem2() {

 prepare();

 currentMenu = "item2";

 }

 /**

 * Test item3.

 */

 public void testItem3() {

 prepare();

 currentMenu = "item3";

 }

 /**

 * Test item4.

 */

 public void testItem4() {

 prepare();

 currentMenu = "item4";

 }

 /**

 * Handle events.

 */

 public void commandAction(Command c, Displayable d) {

 String label = c.getLabel();

 if (label.equals("Exit")) {

 destroyApp(true);

 } else if (label.equals("Back")) {

 if(currentMenu.equals("item1") ||

 currentMenu.equals("item2") ||

 currentMenu.equals("item3") ||

 currentMenu.equals("item4")) {

 // go back to menu

 mainMenu();

 }

 } else {

 List down = (List)display.getCurrent();

 switch(down.getSelectedIndex()) {

 case 0: testItem1();break;

 case 1: testItem2();break;

 case 2: testItem3();break;

 case 3: testItem4();break;

 }

 }

 }

}

The EventEx1 class implements the CommandListener interface by providing an implementation for the commandAction() method. In this implementation, the label of the command passed into the callback method is checked. If the label equals Exit, the MIDlet is destroyed. If the label equals Back and the current menu is "Item1", "Item2", "Item3", or "Item4", the program goes back to the main menu. Otherwise, the selected item is found and the appropriate method is called. Note that when you have an item list, you can use the Display.getCurrent() method to return the list, and then switch between the items to determine which item is selected. If you run the EventEx1 MIDlet, you should see output similar to Figure 6-2.

Figure 6-2. Handling high-level events

[image: image40.png]

6.1.2.2 Creating GUI components and handling events

Now let's look at another example that demonstrates how to create various GUI components and to handle their events. The MIDlet in this example allows you to test lists, forms, choices, gauges, text fields, and text boxes. The EventEx2 MIDlet shown in Example 6-2 makes use of the following classes, listed in alphabetical order, from the javax.microedition.lcdui package: Alert, AlertType, Command, DateField, Display, Displayable, Form, Gauge, List, TextBox, TextField, and Ticker, as well as the CommandListener interface.

Example 6-2. Constructing and testing GUI components

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class EventEx2 extends MIDlet implements CommandListener {

 // display manager

 Display display = null;

 // a menu with items

 List menu = null; // main menu

 // list of choices

 List choose = null;

 // textbox

 TextBox input = null;

 // ticker

 Ticker ticker = new Ticker("Test GUI Components");

 // alerts

 final Alert soundAlert = new Alert("sound Alert");

 // date

 DateField date = new DateField("Today's date: ",

 DateField.DATE);

 // form

 Form form = new Form("Form for Stuff");

 // gauge

 Gauge gauge = new Gauge("Gauge Label", true, 10, 0);

 // text field

 TextField textfield = new TextField("TextField Label", "abc",

 50, 0);

 // command

 static final Command backCommand = new Command("Back",

 Command.BACK, 0);

 static final Command mainMenuCommand = new Command("Main",

 Command.SCREEN, 1);

 static final Command exitCommand = new Command("Exit",

 Command.STOP, 2);

 String currentMenu = null;

 // constructor.

 public EventEx2() {

 }

 /**

 * Start the MIDlet by creating a list of items and associating

 * the exit command with it.

 */

 public void startApp() throws MIDletStateChangeException {

 display = Display.getDisplay(this);

 menu = new List("Test Components", Choice.IMPLICIT);

 menu.append("Test TextBox", null);

 menu.append("Test List", null);

 menu.append("Test Alert", null);

 menu.append("Test Date", null);

 menu.append("Test Form", null);

 menu.addCommand(exitCommand);

 menu.setCommandListener(this);

 menu.setTicker(ticker);

 mainMenu();

 }

 public void pauseApp() {

 display = null;

 choose = null;

 menu = null;

 ticker = null;

 form = null;

 input = null;

 gauge = null;

 textfield = null;

 }

 public void destroyApp(boolean unconditional) {

 notifyDestroyed();

 }

 // main menu

 void mainMenu() {

 display.setCurrent(menu);

 currentMenu = "Main";

 }

 /**

 * Test the TextBox component.

 */

 public void testTextBox() {

 input = new TextBox("Enter Some Text:", "", 5,

 TextField.ANY);

 input.setTicker(new Ticker("testTextBox"));

 input.addCommand(backCommand);

 input.setCommandListener(this);

 input.setString("");

 display.setCurrent(input);

 currentMenu = "input";

 }

 /**

 * Test the List component.

 */

 public void testList() {

 choose = new List("Choose Items", Choice.MULTIPLE);

 choose.setTicker(new Ticker("listTest"));

 choose.addCommand(backCommand);

 choose.setCommandListener(this);

 choose.append("Item 1", null);

 choose.append("Item 2", null);

 choose.append("Item 3", null);

 display.setCurrent(choose);

 currentMenu = "list";

 }

 /**

 * Test the Alert component.

 */

 public void testAlert() {

 soundAlert.setType(AlertType.ERROR);

 soundAlert.setString("** ERROR **");

 display.setCurrent(soundAlert);

 }

 /**

 * Test the DateField component.

 */

 public void testDate() {

 java.util.Date now = new java.util.Date();

 date.setDate(now);

 Form f = new Form("Today's date");

 f.append(date);

 f.addCommand(backCommand);

 f.setCommandListener(this);

 display.setCurrent(f);

 currentMenu = "date";

 }

 /**

 * Test the Form component.

 */

 public void testForm() {

 form.append(gauge);

 form.append(textfield);

 form.addCommand(backCommand);

 form.setCommandListener(this);

 display.setCurrent(form);

 currentMenu = "form";

 }

 /**

 * Handle events.

 */

 public void commandAction(Command c, Displayable d) {

 String label = c.getLabel();

 if (label.equals("Exit")) {

 destroyApp(true);

 } else if (label.equals("Back")) {

 if(currentMenu.equals("list") ||

 currentMenu.equals("input") ||

 currentMenu.equals("date") ||

 currentMenu.equals("form")) {

 // go back to menu

 mainMenu();

 }

 } else {

 List down = (List)display.getCurrent();

 switch(down.getSelectedIndex()) {

 case 0: testTextBox();break;

 case 1: testList();break;

 case 2: testAlert();break;

 case 3: testDate();break;

 case 4: testForm();break;

 }

 }

 }

}

To test the EventEx2 MIDlet using the J2ME Wireless Toolkit, do the following:

1. Create a new project (call it Example 6-2) and a MIDlet class (call it EventEx2), copy the code to the appropriate location, and compile it.

2. Run the EventEx2 MIDlet in the emulator.

3. You should see the name of the project (Example 6-2) in the application manager, as shown in Figure 6-3.

Figure 6-3. Project Example 6-2 MIDlet

[image: image41.png]

4. Activate the MIDlet.

5. As the MIDlet runs, you see a menu with the following options: Test TextBox, Test List, Test Alert, Test Date, and Test Form, as shown in Figure 6-4.

Figure 6-4. EventEx2 MIDlet

[image: image42.png]Tost 5L Coreor

st Conponerts

Z—

Tost At

-

6. Choose a test to perform.

Tests from the EventEx2 MIDlet are shown in Figure 6-5.

Figure 6-5. The TextBox, List, and Alert tests

[image: image43.png]-

If you have a soundcard, you will hear a warning sound with the alert. The remaining tests from the EventEx2 MIDlet are shown in Figure 6-2.

Figure 6-6. DateField, Calendar, and Form, with Gauge and TextField tests

[image: image44.png][—seecinghe e s
w3t ompanet e
Chnrsigaethsig

[-romangnse
ndTonies

6.1.3 The ItemStateListener Interface

Applications use the ItemStateListener interface to receive events that indicate changes in the internal state of items within a Form screen. Items within a Form screen may be changed when the user performs any of the following actions:

· Adjusts the value of an interactive Gauge.
· Enters or modifies the values of a TextField.
· Enters a new date or time in a DateField.
· Changes the set of selected values in a ChoiceGroup.

This interface has only one method that a listener must implement:

public void itemStateChanged(Item item);

You can use the setItemStateListener() method of the Form class to register a listener for these conditions, as shown in the next section.

6.1.3.1 Changing the date

In Example 6-3, a DateField object is created and added to a form. When you click on the date, you can change it by navigating through the calendar. When the date is changed, a message appears.

Example 6-3. Implementing the ItemStateListener interface

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class EventEx3 extends MIDlet {

 Display display;

 public EventEx3() {

 display = Display.getDisplay(this);

 }

 public void destroyApp (boolean unconditional) {

 notifyDestroyed();

 System.out.println("App destroyed ");

 }

 public void pauseApp () {

 display = null;

 System.out.println("App paused.");

 }

 public void startApp () {

 Form form = new Form("Change Date");

 ItemStateListener listener = new ItemStateListener() {

 java.util.Calendar cal = java.util.Calendar.

 getInstance(java.util.TimeZone.getDefault());

 public void itemStateChanged(Item item) {

 cal.setTime(((DateField)item).getDate());

 System.out.println("\nDate has changed");

 }

 };

 // register for events

 form.setItemStateListener(listener);

 // get today's date

 java.util.Date now = new java.util.Date();

 DateField dateItem = new DateField("Today's date:",

 DateField.DATE);

 dateItem.setDate(now);

 // add date to the Form screen

 form.append(dateItem);

 display.setCurrent(form);

 }

}

Here, the ItemStateListener interface is implemented as an anonymous inner class by providing an implementation to the itemStateChanged() method. If you run the EventEx3 MIDlet, you should see output similar to Figure 6-7.

Figure 6-7. Implementing the ItemStateListener interface

[image: image45.png]

6.2 Handling Low-Level Events

If you use the Canvas class to write applications to access low-level input events or to issue graphics calls for drawing to the display, you must handle low-level events. Game applications are likely to use the Canvas class because it provides methods to handle game actions and key events. The key events are reported with respect to keycodes that are directly bound to concrete keys on the device.

The Canvas class, which is a subclass of Displayable, allows the application to register a listener for commands, but it requires applications to subclass the listener first. Also, while screens allow the application to define a listener and register it with an instance of the Screen class, the Canvas class does not allow this, because several listener interfaces need to be created, one for each kind of event.

6.2.1 Key Events

Every key for which events are reported is assigned a keycode. The MIDP defines the following keycodes in the Canvas class:

KEY_NUM0
The keycode for key 0

KEY_NUM1
The keycode for key 1

KEY_NUM2
The keycode for key 2

KEY_NUM3
The keycode for key 3

KEY_NUM4
The keycode for key 4

KEY_NUM5
The keycode for key 5

KEY_NUM6
The keycode for key 6

KEY_NUM7
The keycode for key 7

KEY_NUM8
The keycode for key 8

KEY_NUM9
The keycode for key 9

KEY_STAR
The keycode for the star key "*"

KEY_POUND
The keycode for the pound key "#"

As you probably guessed, these are the keys 0..9, *, and #. Other keys might exist on some devices, but for portability, applications should use only the standard keycodes. The getKeyName() method is used to retrieve an informative string for a key.

6.2.2 Game Actions

If your application needs arrow keys and gaming-related events, use game actions instead of keycodes. Canvas defines the following constants as well:

UP
A constant for the UP game action

DOWN
A constant for the DOWN game action

LEFT
A constant for the LEFT game action

RIGHT
A constant for the RIGHT game action

FIRE
A constant for the FIRE game action

GAME_A
A constant for the general purpose "A" game action

GAME_B
A constant for the general purpose "B" game action

GAME_C
A constant for the general purpose "C" game action

GAME_D
A constant for the general purpose "D" game action

While each keycode is mapped to one game action, a game action can be associated with more than one keycode. The translation between the two is done with the getKeyCode() and getGameAction() methods.

	[image: image46.png]

	If your application uses game actions and you want the application to be portable, you should translate key events into game actions with the getGameAction() method and test the result. For example, the game actions UP, DOWN, LEFT, and RIGHT can be mapped differently on different devices. The getGameAction() method returns the RIGHT game action, for example, when the user presses the key that is a natural right on the device.

	

6.2.3 Event Delivery Methods

The following methods of the Canvas class are available for handling low-level events:

protected void keyPressed(int keyCode);

protected void keyReleased(int keyCode);

protected void keyRepeated(int keyCode);

protected void pointerPressed(int x, int y);

protected void pointerDragged(int x, int y);

protected void pointerReleased(int x, int y);

These methods are callbacks that you should override in a class that extends the Canvas class. There are a couple of important things to note here:

· The keyRepeated() method might not be available on all devices. Your application should check the availability of repeat actions by calling the hasRepeatEvents() method.

· The pointer events may not be present on all devices, so before using the pointerPressed(), pointerDragged(), and pointerReleased() methods, your application should check if a pointer mechanism is available by calling the hasPointerEvents() and hasPointerMotionEvents() methods first.

6.2.3.1 Handling low-level events

Example 6-4 shows how to handle low-level events. In this example, the Canvas class is subclassed to use an anonymous inner class, an implementation is provided for the keyPressed() and keyReleased() methods, and an empty implementation is provided for the paint() method. When a key is pressed or released, the application prints the value of that key.

Example 6-4. Handling low-level events

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class EventEx4 extends MIDlet {

 Display display;

 Command exit;

 public EventEx4() {

 display = Display.getDisplay(this);

 }

 public void destroyApp (boolean unconditional) {

 }

 public void pauseApp () {

 System.out.println("App paused.");

 }

 public void startApp () {

 display = Display.getDisplay(this);

 Canvas canvas = new Canvas() { // anonymous class

 public void paint(Graphics g) {

 }

 protected void keyPressed(int keyCode) {

 if (keyCode > 0) {

 System.out.println("keyPressed " +((char)keyCode));

 } else {

 System.out.println("keyPressed action "

 +getGameAction(keyCode));

 }

 }

 protected void keyReleased(int keyCode) {

 if (keyCode > 0) {

 System.out.println("keyReleased " +((char)keyCode));

 } else {

 System.out.println("keyReleased action "

 +getGameAction(keyCode));

 }

 }

 }; // end of anonymous class

 exit = new Command("Exit", Command.STOP, 1);

 canvas.addCommand(exit);

 canvas.setCommandListener(new CommandListener() {

 public void commandAction(Command c, Displayable d) {

 if(c == exit) {

 notifyDestroyed();

 } else {

 System.out.println("Saw the command: "+c);

 }

 }

 });

 display.setCurrent(canvas);

 }

}

If you run the EventEx3 MIDlet and activate it, you should see output similar to that in Figure 6-2.

Figure 6-8. Handling low-level events

[image: image47.png]SR SR i 0l

O vewrroieet | o5 open

Project "EventExaapled loade
Progect seceings saved
Builaing "EventExaaples”
Eote C:\TEVIR\sppa\Events
izote C:\JZMENTR, apps Eventix
Buila cowplece

Saving £ile: /C: (IZNEVTR apps/.
Coutd not creste oom Intor
KeyReleased 1

Keybressed 2

KeyReleased 2

keypressed 3

keyheleased 3

KeyPressed action 2
eyReleasea sceton 2
KeyPressed accion
keyeleased action 5
Keypresse accion 1
keyReleased sccion 1
keytressed accion §
KeyReleased action 5
keypressed 9

Keyleleased 8

An alternative implementation for the keyPressed() method is to interpret the keys at runtime, as shown in the following segment of code:

public void keyPressed(int keyCode) {

 int action = getGameAction(keyCode);

 switch(action) {

 case LEFT: System.out.println("MOVE TO THE LEFT");break;

 case RIGHT: System.out.println("MOVE TO THE RIGHT");break;

 // and so on....

 }

}

Chapter 7. Networking

Way back in Chapter 1, we briefly introduced the CLDC Generic Connection Framework. Let's quickly review why it was necessary to create an entirely new networking library for the CLDC.

The java.io and java.net packages of the J2SE are not suitable for handheld devices with a small memory footprint, for the following reasons:

· Device manufacturers who work with circuit-switched networks require stream-based connections such as the Transport Control Protocol (TCP), which is a connection-oriented protocol.

· Device manufacturers working with packet-switched networks require datagram-based connections such as the User Datagram Protocol (UDP), which is a connectionless protocol.

· Other handheld devices have specific mechanisms for communications.

All this variation makes designing networking facilities for the CLDC quite a challenge. This challenge has led to the design of a set of related abstractions that can be used at the programming level instead of using different abstractions for different forms of communications. For example, the J2SE java.net package provides a set of related abstractions in the form of over 20 networking classes, including Socket, ServerSocket, and DatagramSocket. With the CLDC, however, we need to go a step further to save space.

7.1 Generic Connections

In the Generic Connection Framework, all connections are created using the static open() methods from a single class: javax.microedition.io.Connector . If successful, these methods return an object that implements one of the generic connection interfaces. Figure 7-1 shows how these interfaces form an inheritance hierarchy. The Connection interface (don't confuse Connection with Connector) is the base interface.

Figure 7-1. Connection interface hierarchy

[image: image48.png]—

SueanComeciontofier

—

nputComnectio

Comection
¥

DatagamComection

— 1
Outputtomecton

S

t

SueanComnecion

t

ConentComedion

· The Connection interface represents the most basic connection type. It can only be opened and closed.

· The InputConnection interface represents a device from which data can be read. Its openInputStream() method returns an input stream for the connection.

· The OutputConnection interface represents a device to which data can be written. Likewise, its openOutputStream() method returns an output stream for the connection.

· The StreamConnection interface combines the input and output connections.

· The ContentConnection interface extends the StreamConnection interface. It provides access to some of the basic metadata information provided by HTTP connections.

· The StreamConnectionNotifier interface waits for a connection to be established. It returns an object that implements the StreamConnection interface, on which a communication link has been established.

· The DatagramConnection interface is used to represent a datagram endpoint.

The simplest open() method of the Connector class has the following syntax:

public Connection open(String name) throws java.io.IOException;

The String parameter has the format "scheme:targetaddress;parameters" and conforms to the URL syntax in RFC 2396. Here are a few examples:

Establish an HTTP connection

Connector.open("http://www.ora.com");
Start a socket connection

Connector.open("socket://www.ora.com:80");

Establish a datagram connection

Connector.open("datagram://192.168.2.101:2345");

Communicate with a port

Connector.open("comm:0;baudrate=9600");
Open files

Connector.open("file:/myfile.txt");
The goal of the above syntax is to isolate the differences between the setup of one protocol and another protocol into a simple string that characterizes the type of connection. Most of the application's code remains the same, regardless of the protocol you use. You will see the benefits of this in the examples later in this chapter.

	[image: image49.png]

	The connection examples above are for illustration only. The CLDC itself does not provide any protocol implementations, because no implementations should be provided at the configuration level. In addition, a J2ME profile such as the MIDP does not have to provide implementations for all of the protocols mentioned earlier. The MIDP implementation from Sun Microsystems, for example, provides an implementation for the HTTP protocol, but it does not provide implementations for socket or datagram connections.

	

The Connector class provides two other static open() methods that can be used to open connections, which have the following signatures:

public static Connection open(String url, int mode)

 throws java.io.IOException;

public static Connection open(String url, int mode, boolean timeouts)

 throws java.io.IOException;

The first method takes two parameters: the URL for the connection and the access mode. The access mode is used to indicate to the protocol handler the intentions of the calling code. The access mode can be one of the following constants, which are defined in the Connector class:

public static final int READ;

public static final int WRITE;

public static final int READ_WRITE;

You can use these constants to specify if the connection is going to be exclusively read from (READ), exclusively written to (WRITE), or both (READ_WRITE). If the access mode parameter is omitted, the READ_WRITE default will be used. It is important, however, to note that these flags are protocol-dependent. For example, a connection to a printer would not allow READ access.

The other open() method takes an additional third parameter, which is a boolean flag to indicate that the calling code wants to receive a timeout exception in the form of a java.io.InterruptedIOException. The timeout value is not given, as it is protocol-dependent, and there is no guarantee that the underlying protocol implementation will throw the timeout exception. If this parameter is omitted, then no timeout exceptions will be thrown.

7.2 MIDP Connectivity

The MIDP extends the CLDC Generic Connection Framework to provide support for the HTTP protocol. Why HTTP? Well, HTTP can be implemented using both IP protocols (such as TCP/IP) or non-IP protocols (such as WAP and I-mode). In the latter case, the device would have to utilize a gateway that could perform URL naming resolution to access the Internet, as shown in Figure 7-2.

Figure 7-2. The benefit of HTTP support

[image: image50.png]Javaphone |

Gateway ~

Server

	[image: image51.png]

	All of the MIDP 1.0 implementations must provide support for the HTTP protocol. Therefore, we encourage you to only use protocols supported by the MIDP (i.e., HTTP), as this will allow the application to be portable across all mobile information devices.

	

The idea of having the MIDP support the HTTP protocol is very clever. For network programming, you can revert to the HTTP programming model, and your applications will run on any MIDP device, whether it is a GSM phone with a WAP stack, a phone with I-mode, a Palm VII wireless, or a handheld device with Bluetooth.

7.2.1 The HttpConnection Interface

The HttpConnection interface is part of the javax.microedition.io package. This interface defines the necessary methods and constants to exchange data through an HTTP connection. It has the following methods (the constants, which have been omitted here to save space, are documented in Appendix D):

public interface HttpConnection extends ContentConnection {

 // public instance methods

 public long getDate() throws IOException;

 public long getExpiration() throws IOException;

 public String getFile();

 public String getHeaderField(int n) throws IOException;

 public String getHeaderField(String name) throws IOException;

 public long getHeaderFieldDate(String name, long def) throws IOException;

 public int getHeaderFieldInt(String name, int def) throws IOException;

 public String getHeaderFieldKey(int n) throws IOException;

 public String getHost();

 public long getLastModified() throws IOException;

 public int getPort();

 public String getProtocol();

 public String getQuery();

 public String getRef();

 public String getRequestMethod();

 public String getRequestProperty(String key);

 public int getResponseCode() throws IOException;

 public String getResponseMessage() throws IOException;

 public String getURL();

 public void setRequestMethod(String method) throws IOException;

 public void setRequestProperty(String key, String value) throws IOException;

}

The HTTP protocol is a request-response application protocol in which the parameters of the request must be set before the request is sent. The connection could be in one of the three following states:

Setup

No connection has been established yet.

Connected

A connection has been made and the request has been sent; a response is expected soon.

Closed

The connection has been closed. Some methods will throw an IOException if called.

Only in the setup state can the methods setRequestMethod() and setRequestProperty() be invoked. These can be used to cover the HTTP headers that are typically seen in an HTTP request. For example, suppose you have the following connection:

HttpConnection c = (HttpConnection)

 Connector.open("http://www.ora.com");

You can set the request method to be of type POST as follows:

c.setRequestMethod(HttpConnection.POST);

You can also use the setRequestProperty() method to set some of the HTTP header information. For example, you can set the User-Agent property as follows:

c.setRequestProperty("User-Agent",

 "Profile/MIDP-1.0 Configuration/CLDC-1.0");

The following methods of HttpConnection (or its sub-interfaces), which cause data to be transmitted or received, will cause a state transition from the setup state to the connected state:

public long getDate() throws java.io.IOException

public String getEncoding()

public long getExpiration() throws java.io.IOException

public String getHeaderField(String name) throws java.io.IOException

public long getHeaderFieldDate(String name, long def) throws java.io.IOException

public int getHeaderFieldInt(String name, int def) throws java.io.IOException

public String getHeaderFieldKey(int n) throws java.io.IOException

public long getLastModified() throws java.io.IOException

public long getLength()

public int getResponseCode() throws java.io.IOException

public String getResponseMessage() throws java.io.IOException

public String getType()

public DataInputStream openDataInputStream(String name) throws java.io.IOException

public DataOutputStream openDataOutputStream(String name) throws java.io.IOException

public InputStream openInputStream(String name) throws java.io.IOException

public OutputStream openOutputStream(String name) throws java.io.IOException

While the connection is open (i.e., in the connected state), the following methods can be safely invoked:

public void close() throws java.io.IOException

public String getFile()

public String getHost()

public int getPort()

public String getProtocol()

public String getQuery()

public String getRequestMethod()

public String getRequestProperty(String key)

public String getURL()

Before we look at sample applications, let's briefly review some of the concepts that our examples will be using: the HTTP programming model, CGI, and Java servlets.

7.3 The HTTP Programming Model

HTTP is a request-response application protocol. When programming with Java HTTP libraries, such as the Generic Connection Framework, the parameters of the request must always be set before the request is sent. This allows the entire request, including parameters, to be sent at the same time.

7.3.1 Request Methods

There are two commands to send data from a form on a web page to a CGI script or a servlet hosted by the HTTP server. These commands are GET and POST. Each of these has a different way of sending data to the server.

· For the GET method, the input values are sent as part of the URL in the QUERY_STRING environment variable.

· For the POST method, data is sent as an input stream and its length is saved in the CONTENT_LENGTH environment variable.

The POST method is more secure, and you can send more data using it. As an example, consider the following HTML code for the form shown in Figure 7-3.

Figure 7-3. Form with one field (GET method)

[image: image52.png]Student

<form action=http://www.somesite.com/cgi-bin/getgrade.cgimethod="GET">

Student#:

<input type="text" name="idnum" size=30>

<input name="RetrieveMarks" value="Retrieve Marks" type="submit">

</form>

This form is handled by the script at http://www.somesite.com/cgi-bin/getgrade.cgi. Note that the form uses the GET method to transmit the information. When the user enters a student number, such as 112233, and clicks the Retrieve Marks button, the form data is sent to the CGI script as part of the URL. Hence, the encoded URL is: http://www.somesite.com/cgi-bin/getgrade.cgi?idnum=112233.

In the case of POST, however, input values are not sent as part of the URL. They are sent as an input stream in a separate message.

If the user enters a string with spaces, all spaces are replaced by the pluses (+). Also, if the form requires multiple input values for different fields, the fields are separated by an ampersand (&). For example, if the above form has two input fields—one for the student name and the other for the student number—the names of the fields are name and idnum, respectively. Suppose the input values are "Sam Lee" for name and "112233" for idnum. Then the encoded URL would be: http://www.somesite.com/cgi-bin/getgrade.cgi?name=Sam+Lee&idnum=112233.

7.3.2 Servlets

Java servlets also support a request and response programming model. When a client sends a request to the server, the server relays the request to the servlet. The servlet then constructs a response that the server relays back to the client. Unlike CGI scripts, however, servlets are written in Java and run within the same process as the HTTP server.

When a client request is made, the server first calls upon the service() method of the servlet and passes it a request and response object. The servlet then determines whether this request is a GET or POST operation, and calls either the HttpServlet.doGet() or HttpServlet.doPost() methods as needed. Both the doGet() and doPost() methods take a request object, HttpServletRequest, and a response object, HttpServletResponse, as parameters.[1]

[1] This is just enough information to get you through this chapter. If you'd like to learn more about Java servlets, we recommend Java Servlet Programming by Jason Hunter (O'Reilly).

7.4 Invoking Remote Applications from MIDlets

Now let's look at some examples of fetching HTTP pages and invoking CGI scripts and servlets from MIDlets using the connection framework.

7.4.1 Fetching a Page

Example 7-1 shows how to read the contents of a file referenced by a URL, using a StreamConnection. An HttpConnection can also be used, but since no HTTP-specific behavior is needed here, the StreamConnection is used. The application is very simple. The Connector.open() method opens a connection to the URL and returns a StreamConnection object. Then an InputStream is opened through which to read the contents of the file, one character at a time, until the end of the file (signaled by a character value of -1) is reached. In the event that an exception is thrown, both the stream and connection are closed.

Example 7-1. Fetching a page referenced by a URL

import java.io.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class FetchPageMidlet extends MIDlet {

 private Display display;

 String url = "http://www.javacourses.com/hello.txt";

 public FetchPageMidlet() {

 display = Display.getDisplay(this);

 }

 /**

 * This will be invoked when we start the MIDlet

 */

 public void startApp() {

 try {

 getViaStreamConnection(url);

 } catch (IOException e) {

 //Handle Exceptions any other way you like.

 System.out.println("IOException " + e);

 e.printStackTrace();

 }

 }

 /**

 * Pause, discontinue

 */

 public void pauseApp() {

 }

 /**

 * Destroy must cleanup everything.

 */

 public void destroyApp(boolean unconditional) {

 }

 /**

 * read url via stream connection

 */

 void getViaStreamConnection(String url) throws IOException {

 StreamConnection c = null;

 InputStream s = null;

 StringBuffer b = new StringBuffer();

 TextBox t = null;

 try {

 c = (StreamConnection)Connector.open(url);

 s = c.openInputStream();

 int ch;

 while((ch = s.read()) != -1) {

 b.append((char) ch);

 }

 System.out.println(b.toString());

 t = new TextBox("Fetch Page", b.toString(), 1024, 0);

 } finally {

 if(s != null) {

 s.close();

 }

 if(c != null) {

 c.close();

 }

 }

 // display the contents of the file in a text box.

 display.setCurrent(t);

 }

}

When you run and activate FetchPageMidlet, you should see a screen similar to Figure 7-4.

Figure 7-4. Fetching a page reference by a URL

[image: image53.png]

7.4.2 Invoking a CGI Script (GET)

The following example shows how to invoke a CGI script from an HTTP server, capturing and displaying the results on the handheld device screen. This example uses an HttpConnection object, which is returned by the call to the Connector.open() method. The call to setRequestMethod() sets the request method to GET, followed by two calls to setRequestProperty(), which in turn set the HTTP request header properties User-Agent and Content-Language. In this example, a script is invoked with a student ID number encoded as part of the URL. The script searches a database file and returns the final grade for the student corresponding to the ID number.

	[image: image54.png]

	The URL has the form http://www.javacourses.com/cgi-bin/getgrade?idnum=182016. Alternatively, you can do this with the commented-out code shown below in bold. The latter technique can also be used if the student ID number is to be entered by the user, as you will see in the next example.

	

This example's source code is shown in Example 7-2.

Example 7-2. Invoking a CGI script (GET method)

import java.io.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

/**

 * An example MIDlet to invoke a CGI script (GET method).

 */

public class InvokeCgiMidlet1 extends MIDlet {

 private Display display;

 String url = "http://www.javacourses.com/cgibin/getgrade.cgi?idnum=182016";

 public InvokeCgiMidlet1() {

 display = Display.getDisplay(this);

 }

 /**

 * Initialization. Invoked when we activate the MIDlet.

 */

 public void startApp() {

 try {

 getGrade(url);

 } catch (IOException e) {

 System.out.println("IOException " + e);

 e.printStackTrace();

 }

 }

 /**

 * Pause, discontinue

 */

 public void pauseApp() {

 }

 /**

 * Destroy must cleanup everything.

 */

 public void destroyApp(boolean unconditional) {

 }

 /**

 * Retrieve a grade....

 */

 void getGrade(String url) throws IOException {

 HttpConnection c = null;

 InputStream is = null;

 OutputStream os = null;

 StringBuffer b = new StringBuffer();

 TextBox t = null;

 try {

 c = (HttpConnection)Connector.open(url);

 // set the request method to GET

 c.setRequestMethod(HttpConnection.GET);

 // set some HTTP request headers

 c.setRequestProperty("User-Agent","Profile/MIDP-1.0 Configuration/CLDC-1.0");

 c.setRequestProperty("Content-Language", "en-CA");

 os = c.openOutputStream();

 /*

 //Retrieve info for ID number 182016

 String str = "?idnum=182016";

 byte postmsg[] = str.getBytes();

 for(int i=0;i<postmsg.length;i++) {

 os.writeByte(postmsg[i]);

 }

 os.flush();

 */

 is = c.openDataInputStream();

 int ch;

 while ((ch = is.read()) != -1) {

 b.append((char) ch);

 System.out.println((char)ch);

 }

 t = new TextBox("Final Grades", b.toString(), 1024, 0);

 } finally {

 if(is!= null) {

 is.close();

 }

 if(os != null) {

 os.close();

 }

 if(c != null) {

 c.close();

 }

 }

 display.setCurrent(t);

 }

}

When you run and activate InvokeCgiMidlet1, you should see a screen similar to Figure 7-5.

Figure 7-5. Invoking a CGI script (GET method)

[image: image55.png]

7.4.3 Invoking a CGI Script (POST)

Now let's talk about making HTTP requests using POST. In this example, the input is sent to the CGI script, called pgrade.cgi, in a message.

The URL variable, defined in Example 7-3, specifies the location of the pgrade.cgi CGI script. In this example, an HTTP connection is opened to the CGI script, followed by opening input and output streams on the connection. Data for the script is sent through the output stream, and the response is received through the input stream. The CGI script in this example, which is written in Perl, takes a student number input value. If the student number is found in the database file, the script retrieves the corresponding final grade and returns the grade to the calling client. In the case of MIDlets, however, there are no HTML forms, so here the message name=182016 is sent to the CGI script. The source code for this example is shown in Example 7-3. Note that when using the POST method, the CONTENT_TYPE header must be set to application/x-www-form-urlencoded, because this content type:

· Specifies normal data encoding.

· Converts blanks to plus (+) signs.

· Converts non-alphanumeric characters to hexadecimal numbers preceded by a percent sign (%).

· Places an ampersand (&) between each name=value pair.

In short, this content type prevents data corruption during the transmission of form data from the browser to the server.

Example 7-3. Invoking a CGI script (POST method)

import java.io.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

/**

 * An example MIDlet to invoke a CGI script (POST method is used).

 */

public class InvokeCgiMidlet2 extends MIDlet {

 private Display display;

 String url = "http://www.javacourses.com/cgi-bin/pgrade.cgi";

 public InvokeCgiMidlet2() {

 display = Display.getDisplay(this);

 }

 /**

 * Initialization. Invoked when we activate the MIDlet.

 */

 public void startApp() {

 try {

 getGrade(url);

 } catch (IOException e) {

 System.out.println("IOException " + e);

 e.printStackTrace();

 }

 }

 /**

 * Pause, discontinue

 */

 public void pauseApp() {

 }

 /**

 * Destroy must cleanup everything.

 */

 public void destroyApp(boolean unconditional) {

 }

 /**

 * Retrieve a grade....

 */

 void getGrade(String url) throws IOException {

 HttpConnection c = null;

 InputStream is = null;

 OutputStream os = null;

 StringBuffer b = new StringBuffer();

 TextBox t = null;

 try {

 c = (HttpConnection)Connector.open(url);

 c.setRequestMethod(HttpConnection.POST);

 c.setRequestProperty("CONTENT-TYPE",

 "application/x-www-form-urlencoded");

 c.setRequestProperty("User-Agent",

 "Profile/MIDP-1.0 Configuration/CLDC-1.0");

 c.setRequestProperty("Content-Language", "en-CA");

 os = c.openOutputStream();

 // send input

 String str = "name=182016";

 byte postmsg[] = str.getBytes();

 for(int i=0;i<postmsg.length;i++) {

 os.write(postmsg[i]);

 }

 os.flush();

 is = c.openDataInputStream();

 int ch;

 // receive output

 while ((ch = is.read()) != -1) {

 b.append((char) ch);

 System.out.println((char)ch);

 }

 t = new TextBox("Final Grades", b.toString(), 1024, 0);

 } finally {

 if(is!= null) {

 is.close();

 }

 if(os != null) {

 os.close();

 }

 if(c != null) {

 c.close();

 }

 }

 display.setCurrent(t);

 }

}

When you run and activate the InvokeCgiMidlet2, you should see output similar to Figure 7-6.

Figure 7-6. Invoking a CGI script (POST method)

[image: image56.png]

7.4.4 Invoking a Servlet

You can invoke a servlet from a MIDlet the same way you would invoke a CGI script: by opening an HTTP connection and obtaining input/output streams on that connection. This section presents two examples.

· The first example invokes a servlet using the GET operation and collects and displays the results.

· In the second example, the servlet accepts input obtained from the user of the handset and invoked with the POST method.

7.4.4.1 FirstMidletServlet

In this example, InvokeServletMidlet1 is invoked with the GET method and the response is received and displayed on the handset. No input is sent to the servlet. When invoked, the servlet sends the "Servlet Invoked!" string and the date back to the client. The source code for the InvokeServletMidlet1 is in Example 7-4.

Example 7-4. Invoking a servlet with no input values

import java.io.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

/**

 * An example MIDlet to invoke a servlet.

 */

public class InvokeServletMidlet1 extends MIDlet {

 private Display display;

 String url = "http://127.0.0.1:8080/examples/servlet/HelloServlet";

 public InvokeServletMidlet1() {

 display = Display.getDisplay(this);

 }

 /**

 * Initialization. Invoked when we activate the MIDlet.

 */

 public void startApp() {

 try {

 invokeServlet(url);

 } catch (IOException e) {

 System.out.println("IOException " + e);

 e.printStackTrace();

 }

 }

 /**

 * Pause, discontinue

 */

 public void pauseApp() {

 }

 /**

 * Destroy must cleanup everything.

 */

 public void destroyApp(boolean unconditional) {

 }

 /**

 * Retrieve a grade....

 */

 void invokeServlet(String url) throws IOException {

 HttpConnection c = null;

 InputStream is = null;

 StringBuffer b = new StringBuffer();

 TextBox t = null;

 try {

 c = (HttpConnection)Connector.open(url);

 c.setRequestMethod(HttpConnection.GET);

 c.setRequestProperty("User-Agent","Profile/MIDP-1.0 Configuration/CLDC-1.0");

 c.setRequestProperty("Content-Language", "en-CA");

 is = c.openDataInputStream();

 int ch;

 while ((ch = is.read()) != -1) {

 b.append((char) ch);

 }

 t = new TextBox("First Servlet", b.toString(), 1024, 0);

 } finally {

 if(is!= null) {

 is.close();

 }

 if(c != null) {

 c.close();

 }

 }

 display.setCurrent(t);

 }

}

The source code for the HelloServlet, which sends the message "Servlet Invoked!" and the date back to the client, is shown in Example 7-5. You will need a web server that is capable of running servlets to make this work, such as the freely distributed Apache Tomcat.

Example 7-5. HelloServlet

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

 * The simplest possible servlet.

 */

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 response.setContentType("text/plain");

 PrintWriter out = response.getWriter();

 out.println("Servlet Invoked!");

 out.println(new Date());

 }

}

When you run and activate the InvokeServletMidlet1, you should see something similar to Figure 7-7.

Figure 7-7. FirstServletMidlet output

[image: image57.png]

7.4.4.2 SecondMidletServlet

Now let's see how to invoke a servlet that expects input with the POST method. This is a more sophisticated example than the previous one. In this example, the InvokeServletMidlet2 prompts the user to enter a value (the first name). When the user presses the key that corresponds to the Submit command, the RequestServlet is invoked. RequestServlet then retrieves the input values of the request from the buffer and returns them back to the client, showing that the servlet received the POST request. Note that the servlet and the MIDlet in this example run on the same machine. The source code for the InvokeServletMidlet2 is shown in Example 7-6.

Example 7-6. Invoking a servlet with an input value

import javax.microedition.rms.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import java.io.*;

import java.util.Vector;

public class InvokeServletMidlet2 extends MIDlet implements CommandListener {

 Display display = null;

 List menu = null;

 TextBox input = null;

 String user = null;

 // note that the servlet and MIDlet run on the same machine

 String url =

 "http://127.0.0.1:8080/examples/servlet/RequestServlet2";

 static final Command backCommand = new Command("Back",

 Command.BACK, 0);

 static final Command submitCommand = new Command("Submit",

 Command.OK, 2);

 static final Command exitCommand = new Command("Exit",

 Command.STOP, 3);

 String currentMenu = null;

 public InvokeServletMidlet2() {

 }

 public void startApp() throws MIDletStateChangeException {

 display = Display.getDisplay(this);

 menu = new List("Invoke Servlet", Choice.IMPLICIT);

 menu.append("Add a user", null);

 menu.addCommand(exitCommand);

 menu.setCommandListener(this);

 mainMenu();

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 notifyDestroyed();

 }

 void mainMenu() {

 display.setCurrent(menu);

 }

 public void addName() {

 input = new TextBox("Enter first name:", "", 5,

 TextField.ANY);

 input.addCommand(submitCommand);

 input.addCommand(backCommand);

 input.setCommandListener(this);

 input.setString("");

 display.setCurrent(input);

 }

 void invokeServlet(String url) throws IOException {

 HttpConnection c = null;

 InputStream is = null;

 OutputStream os = null;

 StringBuffer b = new StringBuffer();

 TextBox t = null;

 try {

 c = (HttpConnection)Connector.open(url);

 c.setRequestMethod(HttpConnection.POST);

 c.setRequestProperty("CONTENT-TYPE",

 "application/x-www-form-urlencoded");

 c.setRequestProperty("User-Agent",

 "Profile/MIDP-1.0 Configuration/CLDC-1.0");

 c.setRequestProperty("Content-Language", "en-CA");

 os = c.openOutputStream();

 String str = "name="+user;

 byte postmsg[] = str.getBytes();

 System.out.println("Length: "+str.getBytes());

 for(int i=0;i<postmsg.length;i++) {

 os.write(postmsg[i]);

 }

 // or you can easily do:

 //os.write(("name="+user).getBytes());

 os.flush();

 is = c.openDataInputStream();

 int ch;

 while ((ch = is.read()) != -1) {

 b.append((char) ch);

 System.out.print((char)ch);

 }

 t = new TextBox("Second Servlet", b.toString(), 1024, 0);

 t.addCommand(backCommand);

 t.setCommandListener(this);

 } finally {

 if(is!= null) {

 is.close();

 }

 if(os != null) {

 os.close();

 }

 if(c != null) {

 c.close();

 }

 }

 display.setCurrent(t);

 }

 public void commandAction(Command c, Displayable d) {

 String label = c.getLabel();

 if (label.equals("Exit")) {

 destroyApp(true);

 } else if (label.equals("Back")) {

 mainMenu();

 } else if (label.equals("Submit")) {

 user = input.getString();

 try {

 invokeServlet(url);

 }catch(IOException e) {}

 } else {

 addName();

 }

 }

}

The source code for the RequestServlet, which retrieves the POST request from the buffer and sends the input values back to the client, is shown in Example 7-7.

Example 7-7. RequestServlet

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

 * Example servlet showing request headers

 */

public class RequestServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 response.setContentType("text/plain");

 PrintWriter out = response.getWriter();

 BufferedReader br = request.getReader();

 String buf = br.readLine();

 out.print("Rec: "+buf);

 }

}

	[image: image58.png]

	In order to use ServletRequest.getParameter(String) to retrieve the input values from the MIDlet in Example 7-6, the CONTENT_TYPE header must be set to application/x-www-form-urlencoded, as discussed earlier in this chapter.

	

When you run InvokeServletMidlet2 and invoke it by entering your name, you should see something similar to Figure 7-8.

Figure 7-8. SecondMidletServlet output

[image: image59.png]

7.5 Wireless Session Tracking

The term session tracking means maintaining state information about a series of requests from the same client. Maintaining such information for clients that use HTTP is a problem. Why? Because HTTP is a request-response protocol, which means the connection between the client and the server is not maintained for the duration of the conversation. In other words, HTTP is a stateless protocol. This means you cannot depend on the underlying connection protocol to maintain state information; you must find other ways to perform session tracking.

The two most widely used techniques for session tracking are cookies and URL rewriting. A cookie is a piece of data that a Web server sends to the client. This piece of data is stored by the client and used the next time the client makes a request from that server. However, if cookies are disabled by the browser or, more importantly, if the browser itself does not support them (as is the case with most current wireless devices), then cookies are not of much use. However, you can send and receive cookies through the use of the HttpConnection.setRequestProperty() and HttpConnection.getHeaderField() methods. To send a cookie to a server, simply set the value of the cookie request property before sending the message.

String myLocalCookieVariable;

HttpConnection connection = (HttpConnection)Connection.open(someURL);

Connection.setRequestProperty("cookie", myLocalCookieVariable);

When you receive a response back from the server, you can parse the resulting Set-cookie header field as follows:

is = c.openInputStream();

String cookie = connection.getHeaderField("Set-cookie");

If (cookie != null)

 myLocalCookieVariable = cookie.substring(0, cookie.indexOf(";"));

The other technique for session tracking is URL rewriting. This technique is ideal for clients that do not support cookies or have cookies disabled. With this technique, the session information is encoded into URLs that the server generates. This means that instead of returning this URL (http://www.somesite.com/servlet/shop/catalog.html), the server generates the following URL, or something similar, instead (http://www.somesite.com/servlet/shop/catalog.html;jsessionid=cl98373673At).

The information that would otherwise be stored in a cookie is appended to the URL. You can parse this information out into a String after it arrives, using a technique similar the one we used with cookies in the previous section. The server will look for this information when a request is made from the client. The exact syntax of the encoded URL depends on the underlying server environment. However, the Java Servlet API provides facilities such as the response.encodeURL(String) and response.encodeRedirectURL(String) methods, which you can use for session tracking.

7.6 MIDlet Networking Security

Over the past few years, concerns about security on the Internet have heated up immensely. It's common in this day and age to hear of companies whose data has been hacked and from whom valuable credit card information has been stolen. It probably won't be long before people can "sniff" the data going through cell phones just as easily as data traveling across the Internet. What can you do? Fortunately, computers these days are capable of using encryption techniques to scramble data as it travels through the unsafe corridors of the Internet. In fact, one of the most popular forms of encryption uses a wide variety of cryptographic techniques to protect your data. It's called Secure Sockets Layer (SSL) and is built into practically every web browser.

Will you need encryption for your MIDlet programs? That's a hard question to answer. Many wireless protocols already use a sophisticated level of scrambling—far more than an average "sniffer" can decode. And while cryptographic software can be relatively small and easy to use on a desktop, using it on a cell phone can quickly expend both your processing power and program space. Understanding cryptography can take a bit of time as well.[2] However, if you absolutely must have security on your cell phone to protect data traveling on the Internet, we recommend checking out the open source lightweight API software from "The Legion of the Bouncy Castle" (http://www.bouncycastle.org).

[2] A great place to start, however, is Bruce Schneier's Applied Cryptography, Second Edition (Wiley).

Chapter 8. Database Programming

A database is a non-volatile place for storing the state of objects. For some applications, you might need objects to exist even after the application that created them closes. Without a storage mechanism, objects and their states are destroyed when an application closes. However, if you save objects to a persistent storage facility, such as a database, they can be read in later by the same application or even other applications.

The persistent storage facilities provided in the J2SE platform, such as the JDBC and Object Serialization APIs, are too large for handheld devices with a small memory footprint. Storage requirements vary significantly from one resource-constrained device to another. J2ME and the MIDP solve this problem by using the Record Management System (RMS).

This chapter introduces the details of the MIDP RMS, a persistent storage facility for MIDlets, and shows you how to develop MIDP database applications, using an example involving stocks. Throughout this chapter, the terms record store and database are used interchangeably.

8.1 The Record Management System

An RMS database (or record store) consists of a collection of records that remain persistent after the MIDlet closes. When you invoke the MIDlet again, it can retrieve data from the persistent record store. However, to use the RMS, we need to get familiar with some of the classes and concepts provided by the javax.microedition.rms package.

8.1.1 Record Stores

Record stores, which are binary files, are actually platform-dependent because they are created in platform-unique locations. MIDlets within a single application (a MIDlet suite) can create multiple record stores with different names. The RMS APIs provide the following types of functionality.

· They allow MIDlets to manipulate (add and remove) records within a record store.

· They allow MIDlets in the same application or suite to share records (access each other's record store directly).

Note that no mechanism, however, is provided for sharing records between MIDlets in different MIDlet suites.

Record stores have names that are case-sensitive and cannot be more than 32 characters in length. A MIDlet cannot create two record stores with the same name in the same application. However, it can create a record store with the same name in another application. When you create a new record store in an emulator, it is typically stored under a directory called NOJAM. For example, let's assume you are using the Wireless Toolkit and it is installed under C:\J2MEWTK. If your project name is StockQuotes and your record store is mystocks, the record store is created under C:\J2MEWTK\NOJAM and has the name mystocks.db.

The MIDP RMS implementation ensures that all individual record store operations are atomic, synchronous, and serialized, so no corruption occurs with multiple access. However, if your MIDlets use multiple threads to access a record store, it is your responsibility to synchronize this access. Otherwise, some of your records might accidentally be overwritten if your application is not thread-safe.

8.1.2 The javax.microedition.rms Package

The javax.microedition.rms package consists of four interfaces, one class, and five exception classes.

8.1.2.1 Interfaces

Table 8-1 lists the four interfaces in the javax.microedition.rms package.

	Table 8-1. The interfaces in javax.microedition.rms

	Interface
	Description

	RecordComparator
	This interface defines a comparator to compare two records.

	RecordEnumeration
	This interface represents a bidirectional record enumerator.

	RecordFilter
	This interface defines a filter to examine a record and check if it matches, based on a criteria defined by the application.

	RecordListener
	This interface receives records that were added, changed, or deleted from a record store.

8.1.2.2 Classes

There is one class in this package, as shown in Table 8-2.

	Table 8-2. The class in javax.microedition.rms

	Class
	Description

	RecordStore
	This class represents a record store.

8.1.2.3 Exceptions

There are five exceptions in the package, as shown in Table 8-3.

	Table 8-3. The exceptions in javax.microedition.rms

	Exception
	Description

	InvalidRecordIDException
	This exception is thrown to indicate that the RecordID is invalid.

	RecordStoreException
	This exception is thrown when a general exception is thrown by the RecordStore class.

	RecordStoreFullException
	This exception is thrown when the record store filesystem is full.

	RecordStoreNotFoundException
	This exception is thrown when the record store could not be found.

	RecordStoreNotOpenException
	This exception is thrown to indicate an operation on a closed record store.

8.2 Programming with the RMS

Database programming with the RMS is relatively straightforward. A record store consists of a collection of records that is uniquely identified by its record ID, which is an integer value. The record ID is the primary key for the records. The first record has an ID of 1, and each additional record is assigned an ID that is the previous value plus 1. The record ID is stored as an integer value, which gives the theoretical limit of 2,147,483,647 records.[1]

[1] But if your devices had at least 2.1 gig of memory, you probably wouldn't need to use the J2ME!

8.2.1 Opening, Closing, and Deleting a Record Store

To open a record store, you need to be familiar with the static openRecordStore() method of the RecordStore class:

public static RecordStore openRecordStore(String recordStoreName,

 Boolean createIfNecessary) throws RecordStoreException,

 RecordStoreFullException, RecordStoreNotFoundException

Here is an example of using this method:

RecordStore db = null;

try {

 db = RecordStore.openRecordStore("myDBfile", true);

} catch (RecordStoreNotFoundException rsnfe) {

 // Handle exception

} catch (RecordStoreFullException fsfe) {

 // Handle exception

} catch (RecordStoreException rse) {

 // Handle exception

}

Assuming that everything works right, this line of code creates a new database file named myDBfile. The second parameter, a boolean which is set to true, says that if the record store does not exist, then you should create it.

	[image: image60.png]

	If the openRecordStore() method is called by a MIDlet when the record store is already open by another MIDlet in the same MIDlet suite, the method returns a reference to the same RecordStore object.

	

Once we've opened a record store, we will eventually need to close it. We can do this with the following RecordStore method:

public void closeRecordStore() throws RecordStoreNotOpenException,

 RecordStoreException

It is important to note that the record store will not actually be closed until closeRecordStore() is called as many times as openRecordStore() was called. Therefore, the programmer must balance the number of close calls and open calls before the record store is actually closed. Keeping a record store open can take up a great deal of memory. Consider closing a record store even when a MIDlet is placed in the paused state.

Sometimes it's necessary to locate a particular record store among several that are currently on the device. If you want to find out the names of all the record stores currently on the device, use the following static method:

public static String[] listRecordStores()

You can delete an entire record store from the database, using the following static RecordStore method:

public static void deleteRecordStore(String recordStoreName) throws

 RecordStoreException, RecordStoreNotFoundException

You can find out the size of the currently opened record store in bytes, using the getSize() method:

public int getSize() throws RecordStoreNotOpenException

In addition, if you want to find out how many bytes the current record store can still grow, use the following:

public int getSizeAvailable() throws RecordStoreNotOpenException

Finally, you can use the getVersion() method of the RecordStore to find out the "version" of the current record store. Here, the version does not have anything to do with the version of software that the database is using. Instead, the version is actually an integer stored with the record store that increments each time a record is added, modified, or deleted.

public int getVersion() throws RecordStoreNotOpenException

8.2.2 Creating and Modifying Records

A record is simply an array of bytes. You can use the DataInputStream, DataOutputStream, ByteArrayInputStream, and ByteArrayOutputStream classes to pack and unpack data in and out of byte arrays. For example, suppose you have the following record, represented by a single string: "Firstname, LastName, Age". To add this record to the record store, you can use the addRecord() method:

public int addRecord(byte[] data, int offset, int numBytes) throws

 RecordStoreNotOpenException, RecordStoreException,

 RecordStoreFullException

This method adds all or part of the contents of a byte array of data, starting at the offset specified and continuing the numBytes, and places it in the record store. The method then returns the index assigned to that record in the database. Continuing from the previous example:

try {

 ByteArrayOutputStream baos = new ByteArrayOutputstream();

 DataOutputStream dos = new DataOutputStream(baos);

 dos.writeUTF(record);

 Byte b[] = baos.toByteArray();

 recordNumber = db.addRecord(b, 0, b.length);

} catch (Exception e) {

 // Handle exceptions

}

Here, we construct a DataOutputStream for writing the record to the record store, then convert the ByteArrayOutputStream to a byte array. Finally, we invoke addRecord() to add the record to the record store. This is not the only way to construct and add a new record to a record store, however. Instead of creating a series of linked streams, it is easier to convert a string into a series of bytes using the getBytes() method of String:

try {

 String record = "Firstname, Lastname, Age";

 Byte b[] = record.getBytes();

 recordNumber = db.adRecord(b, 0, b.length);

} catch (Exception e) {

 // Handle Exceptions

}

You can also use the setRecord() method if you want to explicitly reset an indexed record in the record store. This works the same as addRecord(), except that the first parameter is the specific record ID that you wish to set:

public void setRecord(int recordId, byte[] newData, int offset,

 int numBytes) throws RecordStoreNotOpenException,

 InvalidRecordIDException, RecordStoreException,

 RecordStoreFullException

To read a record from the record store, you can use one of two getRecord() methods:

public byte[] getRecord(int recordID) throws

 RecordStoreNotOpenException, InvalidRecordIDException,

 RecordStoreException

public int getRecord(int recordID, byte[] buffer, int offset)

 throws RecordStoreNotOpenException, InvalidRecordIDException,

 RecordStoreException

The first method returns a byte array containing the entire record that was stored at the specified record ID. The second method will attempt to fill the byte array passed in starting at the specified offset with the contents of the specified record ID. The second method will return the amount of bytes actually copied as an integer. Be sure that there is enough room in the byte array to handle the data from the record, or an exception will be thrown.

To extract the data from a byte array, we can do the opposite of what we did before: construct input streams instead of output streams. Here is an example:

String in = null;

try {

 byte[] record = new byte[db.getRecordSize(recordNumber)];

 db.getRecord(recordNumber, record, 0);

 ByteArrayInputStream bais = new ByteArrayInputStream(record);

 DataInputStream dis = new DataInputStream(bais);

 in = dis.readUTF();

} catch (Exception e) {

 // Handle exceptions

}

Or, if we don't want to filter the data through any sort of stream, we can take the easy route and simply pass the byte array directly into the String constructor:

String in = null;

try {

 byte[] record = new byte[db.getRecordSize(recordNumber)];

 db.getRecord(recordNumber, record, 0);

 in = new String(record);

} catch (Exception e) {

 // Handle exceptions

}

To delete a record from the record store, you have to know the record ID of the record to be deleted. To delete the record, use the deleteRecord() method.

public void deleteRecord(int recordID) throws

 RecordStoreNotOpenException, InvalidRecordIDException,

 RecordStoreException

Note that the other records will not change their ID. In fact, the record store will not reuse the ID of a record once it is deleted.

There are a number of other methods that you can use in the RecordStore class. If you want to find out when the record store was last modified, you can use the following method:

public long getLastModified() throws RecordStoreNotOpenException

This method returns a date in the form of a long, which is equivalent to the format used by System.currentTimeMillis(). This can be passed into the constructor of the java.util.Date object, which can in turn be used by the java.util.Calendar object, as well as the javax.microedition.lcdui.DateField component.

If you want to know the name of the current record store, use the getName() method:

public String getName() throws RecordStoreNotOpenException

If you want to find out the next ID that the database will use when storing a record, you can use the getNextRecordID() method:

public int getNextRecordID() throws RecordStoreNotOpenException,

 RecordStoreException

To get a tally of the number of records currently in the record store, use the following method:

public int getNumRecords() throws RecordStoreNotOpenException

If you wish to find out the number of bytes in a currently stored record, use the getRecordSize() method (as we did in one of the previous examples to initialize the receiving byte array):

public int getRecordSize(int recordId) throws

 RecordStoreNotOpenException, InvalidRecordIDException,

 RecordStoreException

Finally, there is one other method that RecordStore includes that allows us to enumerate all the records located in the current record store. It looks like the following:

public RecordEnumeration enumerateRecords(RecordFilter filter,

 RecordComparator comparator, boolean keepUpdated) throws

 RecordStoreNotOpenException

This method will list all the records in the record store, first using the appropriate filter to select those records, then sorting them using the record comparator, and finally returning the results inside a specially designed enumeration object. However, there are several interfaces that we need to go over first before we can grasp the broad picture of what this method does.

8.2.3 Filtering Records

First, the enumerateRecords() method must determine which records will be included in the enumeration that you are requesting. The method determines this by passing in an object that implements the javax.microedition.rms.RecordFilter interface. Luckily, only one method in this interface needs to be implemented:

public boolean matches(byte[] candidate);

This method takes in a byte array that represents a candidate record from a record store. The implementation must return a boolean that indicates whether the record should be included in the enumeration. If the method returns true, the record will be included; if it's false, it will not be. If you want all records to be included in the enumeration, simply pass in null to that parameter of the enumerateRecords() method.

Here is a sample implementation for the RecordFilter interface that only accepts String-based records that start with the letters "JULY":

import javax.microedition.rms.*;

public class MyFilter implements RecordFilter {

 public boolean matches(byte[] candidate) {

 String c = new String(candidate);

 if (c.startsWith("JULY"))

 return true;

 else

 return false;

 }

}

8.2.4 Comparing Records

The enumerateRecords() method has the ability to sort the records that it is returning. If you would like it to do so, you must give it the ability to compare records in the record store. For this, your application must provide an object that implements the javax.microedition.rms.RecordComparator interface. Again, this is relatively simple, as you must implement only one method in this interface:

public int compare(byte[] record1, byte[] record2)

The return value of this method indicates how the two records compare, and it can be one of three constants. For example, suppose you want to lexigraphically compare two strings that you retrieved from two records. Here is a sample implementation:

import javax.microedition.rms.*;

public class MyComparator implements RecordComparator {

 public int compare(byte record1[], byte record2[]) {

 String name1 = new String(record1);

 String name2 = new String(record2);

 int num = name1.compareTo(name2);

 if(num > 0) {

 return RecordComparator.FOLLOWS;

 } else if (num < 0) {

 return RecordComparator.PRECEDES;

 } else {

 return RecordComparator.EQUIVALENT;

 }

 }

}

The constants that the object should return, RecordComparator.FOLLOWS, RecordComparator.PRECEDES, and RecordComparator.EQUIVALENT, are declared in the RecordComparator interface and have the following meanings:

RecordComparator.FOLLOWS
The first record follows the second record in terms of search or sort order.

RecordComparator.PRECEDES
The first record precedes the second record in terms of search or sort order.

RecordComparator.EQUIVALENT
The two records are the same.

If the ID of each of the records is acceptable as an order, then you can pass in null to that parameter of the enumerateRecords() method.

8.2.5 Enumerating Records

Finally, the enumerateRecords() method will return to you an object that implements the javax.microedition.rms.RecordEnumeration interface. This interface is used to provide a standard set of methods to access the enumeration, and acts like a more sophisticated version of the java.util.Enumeration class. It looks like the following:

public interface RecordEnumeration {

 public void destroy();

 public boolean hasNextElement();

 public boolean hasPreviousElement();

 public boolean isKeptUpdated();

 public void keepUpdated(boolean keepUpdated);

 public byte[] nextRecord() throws InvalidRecordIDException,

 RecordStoreNotOpenException, RecordStoreException;

 public int nextRecordId() throws InvalidRecordIDException;

 public int numRecords();

 public byte[] previousRecord() throws InvalidRecordIDException,

 RecordStoreNotOpenException, RecordStoreException;

 public int previousRecordID() throws InvalidRecordIDException;

 public void rebuild();

 public void reset();

}

If you recall the signature of the enumerateRecords() method, you'll remember that it had a third parameter, which was a boolean, called keepUpdated. The function of this boolean is to have the enumeration monitor the current record store. If there are several threads updating the record store at any given time, the enumeration may not have the correct values inside it.

However, if the boolean parameter to enumerateRecords() is set to true, the RecordEnumeration becomes a listener to the record store. If there are any changes to the records, the RecordEnumeration will update itself automatically. However, if the boolean value is set to false, the RecordEnumeration will not update itself until the rebuild() method is called. Which method to use is entirely your choice. However, keep in mind that each call to enumerateRecords() can take quite a bit of time to complete. If you have a large data store, it may be better to implement another strategy.

The following methods of RecordEnumeration will also set and retrieve the boolean property to keep the enumeration updated with any changes to the record store:

public void keepUpdated(boolean keepUpdated);

public boolean isKeptUpdated();

To find out how many records have been filtered into the enumeration itself, use the following method. (Note the number of filtered records may not be the same as the total amount of records in the record store.)

public int numRecords();

If you wish to find out if the enumeration has an element before or after the current position, you can use the following methods. Note that the enumeration will loop around in the event that it travels before the first element or after the final element.

public boolean hasPreviousElement();

public boolean hasNextElement();

If you wish to find the record ID that the previous methods refer to, use these methods:

public int nextRecordId() throws InvalidRecordIDException;

public int previousRecordID() throws InvalidRecordIDException;

You can obtain the next and previous records themselves using the following methods:

public byte[] nextRecord() throws InvalidRecordIDException,

 RecordStoreNotOpenException, RecordStoreException;

public byte[] previousRecord() throws InvalidRecordIDException,

 RecordStoreNotOpenException, RecordStoreException;

This method returns the current position of the enumeration to the state it was at when the enumeration was first created:

public void reset();

And finally, if you want to release all the data that has been stored in the enumeration in order to gain back the memory used, utilize the following method:

public void destroy();

8.2.6 Listening to Record Stores

If you wish to monitor any changes that take place in a record store, you can create an object that implements the javax.microedition.rms.RecordListener interface. This interface contains only three methods:

public interface RecordListener {

 public void recordAdded(RecordStore recordStore, int recordID);

 public void recordRemoved(RecordStore recordStore, int recordID);

 public void recordModified(RecordStore recordStore, int recordID);

}

As you probably guessed, the first method will be called if a record is added, the second will be called if a record is removed, and the third method will be called if a record is modified. All three methods have the same two parameters. The first is a reference to the RecordStore object, and the second parameter is an integer that refers to the actual record store ID that was changed.

Once you've created an object that implements the RecordListener interface, you can add or remove it from the list of listeners of a record store by using the following two methods of the RecordStore class:

public void addRecordListener(RecordListener listener);

public void removeRecordListener(RecordListener listener);

8.2.7 A Stock Database

Now let's see how we would use the RMS package to build a stock database. This example demonstrates how to work with the RMS to build a real MIDlet application. The application builds on the network programming experience we gained in Chapter 7 and is similar to the StockMIDlet demo that comes with the MIDP. The MIDlet for this example does the following:

· Creates a record store (database).

· Adds new records (stocks) to the record store.

· Views the stocks in the database.

To add a stock to the database, the user enters the stock symbol (such as SUNW, IBM, IT, MS, GM, or Ford). The MIDlet retrieves the corresponding stock quote from Yahoo! Finance (http://quote.yahoo.com), constructs a record, and adds it to the database. To view the stocks in the database, the MIDlet iterates through the records in the record store and prints them on the display in a nice format. The implementation of this MIDlet consists of the following three classes: Stock.java, StockDB.java, and QuotesMIDlet.java.

8.2.7.1 The Stock.java Class

This class parses a string obtained from Yahoo! Finance or from the record store into fields that represent, for example, the name of the stock or its price. The string returned from Yahoo! Finance has the following format:

NAME TIME PRICE CHANGELOWHIGHOPENPREV

 "SUNW","2:1PM - 79.75",+3.6875,"64.1875 - 129.3125",78,76.0625

In the MIDlet shown in Example 8-1, the fields retrieved are the name of the stock, the time, and the price.

Example 8-1. Parses a string obtained from Yahoo! Finance or from a database

public class Stock {

 private static String name, time, price;

 // Given a quote from the server,

 // retrieve the name,

 // price, and date of the stock

 public static void parse(String data) {

 int index = data.indexOf('"');

 name = data.substring(++index,(index = data.

 indexOf('"', index)));

 index +=3;

 time = data.substring(index, (index = data.

 indexOf('-', index))-1);

 index +=5;

 price = data.substring(index, (index = data.

 indexOf('<', index)));

 }

 // Get the name of the stock from

 // the record store

 public static String getName(String record) {

 parse(record);

 return(name);

 }

 // Get the price of the stock from

 // the record store

 public static String getPrice(String record) {

 parse(record);

 return(price);

 }

}

8.2.7.2 The StockDB.java Class

This class provides methods that perform the following operations:

· Opens a new record store.

· Adds a new record to the record store.

· Closes the record store.

· Enumerates through the records.

Once you understand how to open a record store, add a new record, and close the record store, the code in Example 8-2 is easy to follow.

Example 8-2. Provide methods for record store operations

import javax.microedition.rms.*;

import java.util.Enumeration;

import java.util.Vector;

import java.io.*;

public class StockDB {

 RecordStore recordStore = null;

 public StockDB() {}

 // Open a record store with the given name

 public StockDB(String fileName) {

 try {

 recordStore = RecordStore.openRecordStore(fileName, true);

 } catch(RecordStoreException rse) {

 rse.printStackTrace();

 }

 }

 // Close the record store

 public void close() throws RecordStoreNotOpenException,

 RecordStoreException {

 if (recordStore.getNumRecords() == 0) {

 String fileName = recordStore.getName();

 recordStore.closeRecordStore();

 recordStore.deleteRecordStore(fileName);

 } else {

 recordStore.closeRecordStore();

 }

 }

 // Add a new record (stock)

 // to the record store

 public synchronized void addNewStock(String record) {

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 DataOutputStream outputStream = new DataOutputStream(baos);

 try {

 outputStream.writeUTF(record);

 } catch (IOException ioe) {

 System.out.println(ioe);

 ioe.printStackTrace();

 }

 byte[] b = baos.toByteArray();

 try {

 recordStore.addRecord(b, 0, b.length);

 } catch (RecordStoreException rse) {

 System.out.println(rse);

 rse.printStackTrace();

 }

 }

 // Enumerate through the records.

 public synchronized RecordEnumeration enumerate() throws

 RecordStoreNotOpenException {

 return recordStore.enumerateRecords(null, null, false);

 }

}

8.2.7.3 The QuotesMIDlet.java Class

Finally, the QuotesMIDlet class is the actual MIDlet that performs the following tasks:

· Create commands (List Stocks, Add a New Stock, Back, Save, Exit)

· Handle command events

· Connect to Yahoo! Finance and retrieve quotes

· Invoke methods from Stock and StockDB to parse quotes and add new stocks to the record store

The source for this file is listed in Example 8-3.

Example 8-3. A MIDlet for the stock database

import javax.microedition.rms.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import java.io.*;

import java.util.Vector;

public class QuotesMIDlet extends MIDlet implements CommandListener {

 Display display = null;

 List menu = null; // main menu

 List choose = null;

 TextBox input = null;

 Ticker ticker = new Ticker("Database Application");

 String quoteServer =

 "http://quote.yahoo.com/d/quotes.csv?s=";

 String quoteFormat = "&f=slc1wop"; // The only format supported

 static final Command backCommand = new Command("Back",

 Command.BACK, 0);

 static final Command mainMenuCommand = new Command("Main",

 Command.SCREEN, 1);

 static final Command saveCommand = new Command("Save",

 Command.OK, 2);

 static final Command exitCommand = new Command("Exit",

 Command.STOP, 3);

 String currentMenu = null;

 // Stock data

 String name, date, price;

 // record store

 StockDB db = null;

 public QuotesMIDlet() { // constructor

 }

 // start the MIDlet

 public void startApp() throws MIDletStateChangeException {

 display = Display.getDisplay(this);

 // open a db stock file

 try {

 db = new StockDB("mystocks");

 } catch(Exception e) {}

 menu = new List("Stocks Database", Choice.IMPLICIT);

 menu.append("List Stocks", null);

 menu.append("Add A New Stock", null);

 menu.addCommand(exitCommand);

 menu.setCommandListener(this);

 menu.setTicker(ticker);

 mainMenu();

 }

 public void pauseApp() {

 display = null;

 choose = null;

 menu = null;

 ticker = null;

 try {

 db.close();

 db = null;

 } catch(Exception e) {}

 }

 public void destroyApp(boolean unconditional) {

 try {

 db.close();

 } catch(Exception e) {}

 notifyDestroyed();

 }

 void mainMenu() {

 display.setCurrent(menu);

 currentMenu = "Main";

 }

 // Construct a running ticker

 // with stock names and prices

 public String tickerString() {

 StringBuffer ticks = null;

 try {

 RecordEnumeration enum = db.enumerate();

 ticks = new StringBuffer();

 while(enum.hasNextElement()) {

 String stock1 = new String(enum.nextRecord());

 ticks.append(Stock.getName(stock1));

 ticks.append(" @ ");

 ticks.append(Stock.getPrice(stock1));

 ticks.append(" ");

 }

 } catch(Exception ex) {}

 return (ticks.toString());

 }

 // Add a new stock to the record store

 // by calling StockDB.addNewStock()

 public void addStock() {

 input = new TextBox("Enter a Stock Name:", "", 5,

 TextField.ANY);

 input.setTicker(ticker);

 input.addCommand(saveCommand);

 input.addCommand(backCommand);

 input.setCommandListener(this);

 input.setString("");

 display.setCurrent(input);

 currentMenu = "Add";

 }

 // Connect to quote.yahoo.com and

 // retrieve the data for a given

 // stock symbol.

 public String getQuote(String input) throws IOException,

 NumberFormatException {

 String url = quoteServer + input + quoteFormat;

 StreamConnection c = (StreamConnection)Connector.open(

 url, Connector.READ_WRITE);

 InputStream is = c.openInputStream();

 StringBuffer sb = new StringBuffer();

 int ch;

 while((ch = is.read()) != -1) {

 sb.append((char)ch);

 }

 return(sb.toString());

 }

 // List the stocks in the record store

 public void listStocks() {

 choose = new List("Choose Stocks", Choice.MULTIPLE);

 choose.setTicker(new Ticker(tickerString()));

 choose.addCommand(backCommand);

 choose.setCommandListener(this);

 try {

 RecordEnumeration re = db.enumerate();

 while(re.hasNextElement()) {

 String theStock = new String(re.nextRecord());

 choose.append(Stock.getName(theStock)+" @ " +

 Stock.getPrice(theStock),null);

 }

 } catch(Exception ex) {}

 display.setCurrent(choose);

 currentMenu = "List";

 }

 // Handle command events

 public void commandAction(Command c, Displayable d) {

 String label = c.getLabel();

 if (label.equals("Exit")) {

 destroyApp(true);

 } else if (label.equals("Save")) {

 if(currentMenu.equals("Add")) {

 // add it to database

 try {

 String userInput = input.getString();

 String pr = getQuote(userInput);

 db.addNewStock(pr);

 ticker.setString(tickerString());

 } catch(IOException e) {

 } catch(NumberFormatException se) {

 }

 mainMenu();

 }

 } else if (label.equals("Back")) {

 if(currentMenu.equals("List")) {

 // go back to menu

 mainMenu();

 } else if(currentMenu.equals("Add")) {

 // go back to menu

 mainMenu();

 }

 } else {

 List down = (List)display.getCurrent();

 switch(down.getSelectedIndex()) {

 case 0: listStocks();break;

 case 1: addStock();break;

 }

 }

 }

}

8.2.8 Testing QuotesMIDlet

To test QuotesMIDlet, use the J2ME Wireless Toolkit as we have throughout the book:

1. Create a new project and compile the code.

2. Run the MIDlet in the emulator. You should see QuotesMIDlet running in the emulator, as shown in Figure 8-1.

Figure 8-1. QuotesMIDlet

[image: image61.png]

3. Activate QuotesMIDlet. You should see a menu with the following two options: List Stocks, and Add a New Stock, as shown in Figure 8-2.

Figure 8-2. QuotesMIDlet stock database

[image: image62.png]Dutnse]

ook Ditaboce

4. Choose the Add a New Stock option and add a few stocks. Figure 8-3 shows that the stocks IBM, GM, and NOR were added in this example.

Figure 8-3. Adding new stocks

[image: image63.png]

5. Go back and choose the View Stocks option. Figure 8-4 shows that this option reads the record store and retrieves all the records (stocks) that have been added.

Figure 8-4. Viewing the record store

[image: image64.png]

Have fun keeping track of your stocks! In the next chapter, we will discuss how to install MIDlets such as this on Palm computing platforms.

Chapter 9. The MIDP for Palm OS

An early access release of the MIDP for Palm OS was released just before JavaOne 2001, in early June, and the First Customer Shipping (FCS) of the MIDP for Palm OS 1.0 was released in mid-October, 2001. The MIDP for Palm OS is a J2ME application runtime environment based on the CLDC 1.0 and MIDP 1.0 specifications. It is targeted at handheld devices (such as Palm Pilot, Handspring Visor, and so on) running Palm OS version 3.5 or higher.

This chapter explains how to install the MIDP for Palm OS on your handheld device, and then how to convert existing MIDlets, developed in earlier chapters, into Palm Resource Code (PRC) files (executable Palm OS applications). The J2ME Wireless Toolkit 1.0.3 supports the MIDP for Palm OS. Hence, it is possible to test MIDlets using a Palm OS device, as shown in Chapter 4.

9.1 Installing the MIDP for Palm OSon the Windows Platform

To install the MIDP for Palm OS, you need to perform the following steps:

1. Download the MIDP for Palm OS. This package (midp4palm-1_0.zip), which is less than one megabyte, is the early access release of the MIDP for Palm OS implementation. You can download it from the Java web site at http://java.sun.com/products/midp4palm.

2. Unzip the package. Do this in the root directory C:\. This gives you a new folder called midp4palm1.0 that contains tools and sample applications. Check to make sure you have a file called MIDP.prc in the PRCfiles directory, which is the application runtime environment that supports the MIDP for Palm OS.

At this point, you are ready to install the MIDP for Palm OS on your Palm device.

9.1.1 Installing the MIDP for Palm OS on the Device

Use the HotSync application that came with the PalmPilot to install the MIDP.prc on your Palm OS device.

1. Place your Palm device in the cradle.

2. Using your Palm Desktop software on the PC (or a similar program), click the Install icon and browse to C:\midp4palm1.0\PRCfiles to select MIDP.prc, as shown in Figure 9-1. Press the HotSync button on the cradle to install the file.

Figure 9-1. Using Palm Desktop to install MIDP.prc

[image: image65.png]JL#Paim Deskiop =lolx]

L N L e —

[FIE]
= ool
T —|
QG dbon e et i s
e et HoSyne comaen
=== [Felawe Thesee |
@ [3
Tobo Herove
Memo

T

e

Epone) /v pam com.

a2 T bt ek e VDD ON

i
e
4

3. Go to the application directory on your Palm and check to see if the Java HQ is there. The Java HQ is the application runtime environment that supports the MIDP for Palm OS. Note that the Java Manager environment takes up roughly 600K of your Palm OS device's storage.

You should see the Java HQ icon, as shown in Figure 9-2. If you do not see it, click on another application (e.g., Calculator) and then go back to the application directory to reset the display.

Figure 9-2. Java HQ special icon on Palm

[image: image66.png]i

1

] emewgom
jessivie:
Simiea]

If you tap the Java HQ icon, you'll see the About screen, as shown in Figure 9-3. This contains the copyright notice and gives you the option to change the Java HQ preferences that apply to every Java application running on the device. More information on the Java HQ preference settings is presented later in this chapter.

Figure 9-3. Java HQ About screen

[image: image67.png]

Now you are ready to install other Java applications on your Palm.

9.1.2 Running Sample Applications

There are several applications for the Palm that are written in Java and that come with the software you just installed. All the files with the .prc extension in the directory C:\midp4palm1.0\PRCfiles are MIDP-based Java applications for the Palm. You can use the HotSync to install them.

As an example, use the HotSync and install the files Games.prc and Demos.prc. Once you have installed these two files, you will see two new icons, as shown in Figure 9-4.

Figure 9-4. Installing sample MIDP-based Java applications

[image: image68.png]

A MIDP-based Java application for the Palm runs just like any other Palm application. Simply tap the corresponding icon. Note that the Java HQ must already be installed. When you launch a Java application on the Palm, the Java HQ (which is equivalent to the application manager) runs automatically. Also, it is important to note that the first time you launch an application, you are asked to read and accept the MIDP license; the application starts automatically once you tap Accept, as shown in Figure 9-5.

Figure 9-5. Running Java applications on the Palm for the first time

[image: image69.png]ST

If you open an application suite (such as Demos), you are prompted to choose which application you want to run, as shown in Figure 9-6. Select an application to run by tapping on its arrow.

Figure 9-6. Selecting an application to run from a suite

[image: image70.png]

9.2 Developing New Applications

You can easily develop new Java applications for the Palm if you are familiar with the MIDlet programming model. If you have run the MIDlets in earlier chapters, or have developed new ones, you can easily turn them into Palm applications by using a converter tool, which we will describe later in this chapter. The development life cycle of a Palm application can be summarized in the following three steps:

1. Develop a MIDlet or a MIDlet suite.

2. Convert the JAR/JAD file pair into a PRC file (executable Palm application).

3. Install the PRC file on the Palm and test the application.

9.2.1 Develop a MIDlet

As always, you can use either the Sun Microsystems Wireless Toolkit or your favorite development environment to develop a MIDlet. Example 9-1 lists the MIDlet that was developed in Chapter 6, which shows how to create various GUI components. The MIDlet for this example allows you to test lists, forms, choices, gauges, text fields, and text boxes.

Example 9-1. GuiTests.java

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class GuiTests extends MIDlet implements CommandListener {

 // display manager

 Display display = null;

 // a menu with items

 List menu = null; // main menu

 // list of choices

 List choose = null;

 // textbox

 TextBox input = null;

 // ticker

 Ticker ticker = new Ticker("Test GUI Components");

 // alerts

 final Alert soundAlert = new Alert("sound Alert");

 // date

 DateField date = new DateField("Today's date: ",

 DateField.DATE);

 // form

 Form form = new Form("Form for Stuff");

 // gauge

 Gauge gauge = new Gauge("Progress Bar", false, 20, 9);

 // text field

 TextField textfield = new TextField("TextField Label", "abc",

 50, 0);

 // command

 static final Command backCommand = new Command("Back",

 Command.BACK, 0);

 static final Command mainMenuCommand = new Command("Main",

 Command.SCREEN, 1);

 static final Command exitCommand = new Command("Exit",

 Command.STOP, 2);

 String currentMenu = null;

 // constructor.

 public GuiTests() {

 }

 /**

 * Start the MIDlet by creating a list of items and associating

 * the exit command with it.

 */

 public void startApp() throws MIDletStateChangeException {

 display = Display.getDisplay(this);

 // open a db stock file

 menu = new List("Test Components", Choice.IMPLICIT);

 menu.append("Test TextBox", null);

 menu.append("Test List", null);

 menu.append("Test Alert", null);

 menu.append("Test Date", null);

 menu.append("Test Form", null);

 menu.addCommand(exitCommand);

 menu.setCommandListener(this);

 menu.setTicker(ticker);

 mainMenu();

 }

 public void pauseApp() {

 display = null;

 choose = null;

 menu = null;

 ticker = null;

 form = null;

 input = null;

 gauge = null;

 textfield = null;

 }

 public void destroyApp(boolean unconditional) {

 notifyDestroyed();

 }

 // main menu

 void mainMenu() {

 display.setCurrent(menu);

 currentMenu = "Main";

 }

 /**

 * Test the TextBox component.

 */

 public void testTextBox() {

 input = new TextBox("Enter Some Text:", "", 10,

 TextField.ANY);

 input.setTicker(new Ticker("Testing TextBox"));

 input.addCommand(backCommand);

 input.setCommandListener(this);

 input.setString("");

 display.setCurrent(input);

 currentMenu = "input";

 }

 /**

 * Test the List component.

 */

 public void testList() {

 choose = new List("Choose Items", Choice.MULTIPLE);

 choose.setTicker(new Ticker("Testing List"));

 choose.addCommand(backCommand);

 choose.setCommandListener(this);

 choose.append("Item 1", null);

 choose.append("Item 2", null);

 choose.append("Item 3", null);

 display.setCurrent(choose);

 currentMenu = "list";

 }

 /**

 * Test the Alert component.

 */

 public void testAlert() {

 soundAlert.setType(AlertType.ERROR);

 //soundAlert.setTimeout(20);

 soundAlert.setString("** ERROR **");

 display.setCurrent(soundAlert);

 }

 /**

 * Test the DateField component.

 */

 public void testDate() {

 java.util.Date now = new java.util.Date();

 date.setDate(now);

 Form f = new Form("Today's date");

 f.append(date);

 f.addCommand(backCommand);

 f.setCommandListener(this);

 display.setCurrent(f);

 currentMenu = "date";

 }

 /**

 * Test the Form component.

 */

 public void testForm() {

 form.append(gauge);

 form.append(textfield);

 form.addCommand(backCommand);

 form.setCommandListener(this);

 display.setCurrent(form);

 currentMenu = "form";

 }

 /**

 * Handle events.

 */

 public void commandAction(Command c, Displayable d) {

 String label = c.getLabel();

 if (label.equals("Exit")) {

 destroyApp(true);

 } else if (label.equals("Back")) {

 if(currentMenu.equals("list") ||

 currentMenu.equals("input") ||

 currentMenu.equals("date") ||

 currentMenu.equals("form")) {

 // go back to menu

 mainMenu();

 }

 } else {

 List down = (List)display.getCurrent();

 switch(down.getSelectedIndex()) {

 case 0: testTextBox();break;

 case 1: testList();break;

 case 2: testAlert();break;

 case 3: testDate();break;

 case 4: testForm();break;

 }

 }

 }

}

9.2.2 Convert a MIDlet into a PRC file

This section will explain how to convert a MIDlet file into a PRC file. First, build the MIDlet in Example 9-1 and make sure there are no compilation errors. Most development tools will create the JAR and JAD files for you automatically. These are the two files needed to convert a MIDlet or a MIDlet suite into a PRC file. If you are using the Wireless Toolkit, the JAR and JAD files can be found in the bin directory of your project.

The MIDP for Palm OS comes with a converter tool to convert a MIDlet JAR/JAD into an executable Palm application. To run the PRC converter tool, you can use the batch file distributed with the release. However, if you have set the JAVA_HOME environment variable on your desktop, edit the CONVERTER.BAT file and change all the JAVA_PATH references to JAVA_HOME. Then run the converted batch file. Alternatively, you can run the tool using the command:

C:\midp4palm1.0\converter> java -jar Converter.jar

The converter.jar archive contains the implementations for the PRC converter tool. If the above command runs successfully, you should see a window similar to Figure 9-7.

Figure 9-7. PRC converter tool

[image: image71.png]=] B

)

The PRC Converter Tool
converts Java splictions
(MIDIets) nto pre fles that
can be istaled rto Pam 05
dences. MIDits are composed.
of o parts: 2 jad and jar fle. |
Cick onthe S icon to find
i fles 1o convest 103

Now, select Convert from the File menu, and navigate to the directory where the JAD and JAR files are located (as with deployment on the Motorola i85s and the i50x, they must be in the same directory). Select the JAD file to be converted, then click on the Convert button to convert the file into a PRC file. If everything is okay, you will see a success message, as shown in Figure 9-8.

Figure 9-8. Converting JAD/JAR to PRC

[image: image72.png]LT
o oo B Y@ e o BE |
ElELE = ‘
Qe [Ben o }
FieiC\mericgpgaiigind [ErS— |
Revu: S |
[=
S \
o |

st o ks o = | ot

By default, the converted PRC file will be saved in the same directory as the JAD/JAR file pair. If you like, you can save all converted PRC files under another directory by choosing Preferences from the Converter's File menu. Then you can select a folder of your choice for output.

9.2.3 Install and Test

Once the JAD/JAR file pair have been converted to a PRC file, you can install the PRC file on your Palm OS device using HotSync. Once installed, you can run it and select components to test, as shown in Figure 9-9. Here, we have tested a form with a progress bar, a text field, an alert, and a date.

Figure 9-9. Testing a MIDP application for the Palm OS

[image: image73.png]= O T—
= -
S E

9.3 PRC Command-Line Conversion

The PRC GUI-based converter tool is easy to use. However, this comes at the expense of functionality. For example, what if you wish to associate a new icon with your application rather than have the default icon? You can use the command-line converter to complete this and other tasks.

The MIDP for Palm OS distribution comes with a command-line tool for converting JAR files to PRC files. The tool is the MakeMIDPApp, which is part of the converter.jar archive. To run this converter, use the command:

C:\mid4palm1.0\converter> java -cp converter.jar com.sun.midp.palm.database.MakeMIDPApp

 [options] JARfile

The options for this command are shown in Table 9-1:

	Table 9-1. Command-line PRC converter tool options

	Option
	Description

	-v
	Verbose output

	-v -v
	More information

	-verbose
	Same as -v

	-icon <file>
	File containing icon (in bmp, pbm, or bin Palm resource format) for the list viewof the application

	-smallicon <file>
	File containing a small icon for the Palm OS device's icon view

	-name <name>
	Short name for the application, for the Palm OS device's icon view

	-longname <name>
	Long name for the application, for Palm OS device list view

	-creator <crid>
	Creator ID for the application

	-type <type>
	Type file for the application (default is appl)

	-outfile <file>
	Name of the PRC file to create

	-o <file>
	Same as -outfile

	-version <string>
	Change version

	-help
	Print help information

	-jad <JADfile>
	A JAD file is specified (MIDlet suite packaging)

With the command-line tool, you can produce PRC files from a single MIDlet or from a MIDlet suite. For example, the following command can be used to convert a JAR file (containing one MIDlet or a MIDlet suite) to a PRC file:

C:\midp4palm1.0\converter> java -cp Converter.jar com.sun.midp.database.MakeMIDPApp -type

 Data gui.jar

This command will produce a PRC file called gui.prc from the JAR file gui.jar. Note that the type of application being converted can be either appl ot Data (case-sensitive). If you don't provide the -type option, then MakeMIDPApp uses the default type, which is appl. It is important to note, however, that if you don't provide a creator ID with the -creator option, you must set the type to Data. The creator ID specifies the unique, four-character identifier for a Palm application. Every Palm application must have a creator ID, and if you do not provide one, then MakeMIDPApp will automatically generate a creator ID for your application. To find out the creator ID, use the -v -v option.

Any application converted using the GUI-based converter tool or the command-line tool is, by default, not beamable from the Palm launcher screen, as shown in Figure 9-10. If you use the command-line tool, however, and provide a creator ID, then the application will be beamable.

Figure 9-10. An application cannot be beamed (by default)

[image: image74.png]

9.4 Advanced Java Applications

You have seen how to develop a simple Java application for the Palm that creates various GUI components. What about advanced applications that use networking and databases? Well, the MIDP for Palm OS supports all the MIDP features, including the Generic Connection Framework and the RMS. So, now let's look at a couple of sample applications developed in Chapter 7 and Chapter 8.

First, however, there are two things that need to be set if you want to test network-based applications from the Palm OS Emulator (POSE).

1. Redirect Netlib calls to host TCP/IP. To do this, right-click on the POSE window, select Setting [image: image75.png]

Properties, and check the Redirect NetLib calls to host TCP/IP, as shown in Figure 9-11.

Figure 9-11. POSE property settings

[image: image76.png]Conuricsions 3
Serd ot =

[
7 e Nl o P TP

Scands
7 Enstesounds

Closng/Quiting
e
@ Ak 10 save sssin
© N save session

HofSne User Nane

EEE———

2. Enable Networking. To do this, tap the Java HQ icon, then tap Preferences and select Networking Enabled, as shown in Figure 9-12.

Figure 9-12. Java HQ networking preferences

[image: image77.png]

The Java HQ allows you to set special preferences. For example, it allows you to set how much memory is used to run Java applications, how many colors are used, the drawing speed, how your device will connect to the Internet, and how the controls should be displayed on the screen. You can easily set all of these options using the Java HQ. However, if you are running an application and would like to set some preferences, select the Preferences item from the Options menu. You can choose whether you want to set Application preferences, Global preferences, or Java HQ preferences, as shown in Figure 9-13. Application preferences affect only the Java application you are running; Global preferences affect every Java application running in your device.

Figure 9-13. Preference settings for the Java HQ and its applications

[image: image78.png]e
o
Sriniom

TR ity

Pt Keypaton = e

Dramingspeed: 1

(D)

9.4.1 Fetching a Page Using HttpConnection

In Chapter 7, a MIDlet was developed to retrieve the contents of a file from a remote server using the HttpConnection interface. The MIDlet that implements this functionality is SecondExample.java. Create a new project in the Wireless Toolkit and use SecondExample.java as its source file. Build it, locate the JAR and JAD files, and use the PRC converter tool to convert them into a PRC file. Install the PRC file on POSE and then run the application. If all goes well, you should see something similar to Figure 9-14.

Figure 9-14. Retrieving a file from a remote server

[image: image79.png]

9.4.2 Retrieving Stock Quotes and Working with Databases

In Chapter 8, a MIDlet was developed that allows you to create a database, add stocks (which are retrieved from Yahoo! Finance) to the database, and view the database. Download the files Stock.java, StockDB.java, and QuotesMIDlet.java. Build the application and create the JAR and JAD file pair. Then use the PRC converter tool to produce a PRC file. Install the PRC file on POSE and then run it. Add a few stocks and then view the stocks from the database. If everything goes well, you should see something similar to Figure 9-15.

Figure 9-15. Stock quotes

[image: image80.png]Lt
&

9.5 A Final Thought

The Palm OS implementation of MIDP provides a runtime environment and tools that allow you to convert your MIDlets into Palm applications without writing a single line of code. I do not know of any easier way to develop fully functional Java applications for the Palm. These applications can be used just like any other Palm application; they run like any Palm program and can be removed from your Palm OS device the same way that you would remove any other application. However, it remains to be seen whether the MIDP for Palm OS is here to stay, or if it will be superseded by the PDA Profile for J2ME, which is based on the CLDC and will provide user interface and data storage APIs for handheld devices. As of this writing, the PDA profile is still in the works and no reference implementation is available.

